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PEFACE

This thesis develops modified critical value tables for

the lognormal distribution using the Kolmogorov-Smirnov,

Anderson-Darling, and the Cramer-Von Mises goodness-of-fit

tests. These critcal value tables can be used when the

scale and location parameters are estimated from the

observed data. Next it compares the power of these new tests

when the hypothesis being tested is the lognormal. The data

tested come from the lognormal, Weibull, gamma, beta,

exponential, and normal distributions. Finally this

research determines the relationship between the modified

critical test statistics and the known shape parameter.

There are several people I would like to thank for

their various contributions to this thesis effort. First,

for suggesting the topic and for being my advisor, I wish to

thank Dr. Albert Moore. I also wish to thank Dr. Joseph Cain

for being my reader.

Finally, and most of all, I thank my husband, Kent, for

staying with me during our first year of marriage while at

AFIT. Without his understanding and patience, this thesis
LI

would not have been possible. Li

Lynnette Townsend Whitsel ................
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This thesis developed modified goodness-of-fit tests

for the three parameter lognormal distribution when the

location and scale parameters must be estimated from the

sample. The critical values were generated for the

Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D), and

Cramer-von Mises,*C-VM) goodness-of-fit tests, using the

Monte Carlo methods of 5000 repetitions, to simulate samples

of size 5,10,...,30 and the shape parameter ranged from 1.0

to 4.0 in increments of .5.

The second part of the research also involved a Monte

Carlo simulation of 5000 repetitions for sample sizes of 5,

15, and 25. From these observations, the power of the test

was determined by counting the number of times the modified

goodness-of-fit tests incorrectly accepted null hypothesis

that the distribution was lognormally distributed. The data

used in this power comparison came from the lognormal

distribution (shape = 1.0 and 3.0), Weibull, gamma, beta,

exponential, and normal distributions.

The third and final phase of research was to determine

the functional relationship, if any, between the known shape

parameter and the new modified critical values. This was

completed by using SAS. '.. >,. '. /

vii .
/F



A MODIFIED GOODNESS-OF-FIT TEST

FOR THE LOGNORMAL DISTRIBUTION

WITH UNKNOWN SCALE AND LOCATION

PARAMETERS

I. INTRODUCTION

The Air Force and other branches of the military are

placing an increased emphasis on system reliablity and

maintainability. In studying current systems, statistics

are gathered and used to determine mean-time-to-failure

(MTTF), mean-time-to-repair (MTTR), and expected life of the

weapon. Statistics are also used in the research of proposed

systems, by predicting MTTF and MTTR of the new parts and

thus, predict the reliability of those parts. The

statistics gathered are then classified as particular

distributions.

The Air Force uses these various distributions in their

simulation models to predict and study factors and effects.

These studies fit data such as time-to-failure of equipment

components, maintenance service times, nuclear fallout

particles, and error clusters in communication circuits

(28:3-4). With the current budget constraints, all branches

of the military are interested in cost effectiveness of new

systems. Aitchison's book on the lognormal distribution,

printed and used by Cambridge University, highlighted the

distributions numerous applications to economic problems.

-1-



A distribution is a single or multi-parameter

theoretical, statistical model of data, often used to

predict the behavior of a population of entities by studying

a sample (portion) of the population. Goodness-of-fit tests

measure the correlation between this observed data sample

and a particular statistical distribution. The four most

often used goodness-of-fit tests are the Chi-square, the

Kolmogorov-Smirnov (K-S), the Cramer-von Mises (C-VM), and

the Anderson-Darling (A-D).

Before applying any goodness-of-fit test, the

researcher must complete four steps to determine which

distribution is suggested by the data. First, the analyst

must collect data for the study problem. Second, he must

hypothesize (guess) which statistical distribution best

characterizes the data. Next, he must estimate parameters

as suggested by the data. The analyst then uses one of the

above goodness-of-fit tests to determine if the data follows

the statistical distribution as hypothesized. If the test

rejects the hypothesis, he must then return to the second

step and try another distribution.

This study of statistical data is becoming more

frequently used in the Air Force for various problems. For

example, in light of budget cuts, the Air Force is more

concerned than ever before with studying reliability and

maintainability (R&M) of systems and all parts of these

systems. In studying R&M, analysts use observations in a

-2-



graphical form to estimate statistical distributions

suggested by the sample data. From this information the

analyst can determine such statistics as mean time between

failure (MTBF) and mean time to repair (MTTR). The

difficulty with using this graphical representation of data

is that the estimates of the parameters are less accurate.

PROBLEM STATEMEN

Currently, there is no test to determine goodness-

of-fit for the lognormal distribution when the scale and

location parameters are unknown. When a random sample of

data is collected, a test could be used to determine if the

population of data was taken from this type of distribution.

The problem to be solved is to apply current goodness-of-fit

tests to lognormal distributions with no known scale and

location parameters.

RESEARCH QUESTION

This research is to develop a modified goodness-of-fit

test for the lognormal distribution with unknown scale and

location parameters.

OBJECTIVES

To solve this problem, the analyst must accomplish

three objectives. First, critical value tables for the

lognormal distribution must be generated and documented for

each of the two modified goodness-of-fit tests. These

modified tables are used when the scale and location

parameters are unknown. Next, the powers of the tests are

-3-



compared, to determine the best test to use for the

lognormal distribution with unknown parameters. This power

is the probability that the statistical test will correctly

reject a wrong distribution guess. Last, the analyst must

determine functional relationships, if any exist, between

the shape parameter and the goodness-of-fit statistics. This

relationship allows one to interpolate missing values not

documented in the generated tables.

-4-



II. GOODNESS-OF-FITTEST

Introduction

Goodness-of-fit tests measure the correlation

(agreement) between an observed data sample and a particular

statistical distribution. Normally, a goodness-of-fit test

is used to examine a random sample to determine if the data

is from a hypothesized specific function (28:2-1). If,

given a certain level of confidence, the test indicates a

close fit, the sample data is from a specified distribution,

this distribution can be used in simulation modeling to

represent real world occurrences. The Air Force is using

simulation models more and more to help managers answer

"what-if" type questions. Other uses for these simulation

models are: how to determine which systems to buy and

projection of maintenance figures for future systems based

on sample data from prototypes.

One branch of statistics is devoted to the study of

distributions that do not depend on certain parameters being

known. This branch is known as non-parametric statistics

and the tests statistics developed for these studies are

non-parametric or distribution-free tests (23:68).

The Chi-square test for goodness of fit, first

presented in 1900 by Pearson, is the oldest and most well

known goodness-of-fit test (7:189). To use the Chi-square

test, one compares the frequency of the observed data with

-5-



the expected frequencies of the hypothesized distribution

(28:2-2). The Chi-square is the most flexible test when

dealing with unknown parameters; for each parameter

unspecified, a deqree of freedom is subtracted. With this

flexibility, comes certain drawbacks; as more parameters are

estimated, the power of the test is diminished greatly. The

lower the power, the greater the possibility that the test

will accept a false hypothesized distribution with greater

frequency. The second drawback of using the Chi-square test

is it's use is only valid for large sample sizes; more than

50 (28:272) and it requires the data to be arbitrarily

grouped (28:2-2) which may affect the results.

Another often used goodness-of-fit test for

distribution-free test is the Kolmogorov-Smirnov (K-S) test,

introduced by Kolmogorov in 1933 (7:344). Kolmogorov and

Smironov developed their goodness-of-fit test to use the

maximum distance between the observed data and the

hypothesized distribution to measure how close the functions

resemble each other (7:344). The K-S test statistic enables

one to form "confidence bands" for different levels of

confidence, about the hypothesized distribution (7:346). If

the data lies within the bands, the data is accepted as

fitting the hypothesized distribution. The drawback with

using the standard K-S test is that all parameters must be

specified; there can be no unknown parameters that must be

estimated from the sample (28:2-2).

A third goodness-of-fit test that measures distance

between the hypothesized CDF and the observed data is the



Cramer-von Mises test. This test is based on the squared

integral of the distance between the observed data (in the

form of an empirical distribution function which is

discussed later) and the distribution to be tested

(28:2-12).

A member of the Cramer-von Mises family of

goodness-of-fit tests is the Anderson-Darling test

statistic. Anderson and Darling wanted more flexability in

testing goodness-of-fit, thus they introduced a technique of

incorporating a weight function into the K-S and C-VM test

statistics (28:2-13). This weight function counteracts the

decreasing difference between observed data and hypothesized

distribution, at the tails. In effect, it heavily weights

the difference at the tails.

In 1948, David and Johnson (8) furthered the study of

non-parametric statistics when they discovered that a

distribution having only a location and scale parameter, can

have these parameters replaced with invariant estimators,

without affecting the goodness-of-fit test results. These

estimators are invariant in that if x is transformed by

x=ax+b the estimate T=T(x) is also transformed

(i.e. T=aT+b) (28:2-3). From these results, it has been

found that critical values based only on sample size and

significance level can be generated (39:5). This principle

can be extended to three-parameter distributions given that

the shape parameter is held constant. In these modified

tests, the test statistic is unchanged but estimates are

used in the place of known parameters.

-7-



HY-othesis Testing and 121t Sttstv

Before studying statistical distribution and goodness

of fit, one must have a working understanding of the basic

concept of hypothesis testing. The first step of this

testing procedure is to observe and gather data on a portion

(sample) of the population. From this sample, the analyst

attempts to draw conclusions on the behavior of the parent

population. The next step is to hypothesize (guess) what

theoretical distribution best fits the observed data. The

analyst then chooses a test to determine if the data does

indeed come from the theoretical (null hypothesis)

distribution. Using the critical value formula for the test

chosen, the analyst follows the test to either accept or

reject whether the data fits the hypothesized distribution.

There are two possible results of hypothesis testing:

to accept a stated distribution guess (null hypothesis) or

to reject this distribution. From these two outcomes, there

are two types of errors that can be made. The Type I error,

denoted C (alpha), is the probability of rejecting the null

when it is correct and the Type II error, denoted .8 (beta),

is the probability of accepting when the null is incorrect

(28). Accepting the null hypothesize (denoted Ho) does not

prove that it is true; there was simply insufficient

evidence to reject the alternative hypothesize. Accepting

the alternative hypothesis is the same as rejecting the

null; that is, there is significant evidence that Ho is

false.

-8-



The strength of a goodness of fit test is measured by

the power of the test. The greater the probability of

rejecting a false null hypothesis (denoted by 1-.8), the

more powerful the test. (7:79)

Empirical Distribution Function (EDF)

Since the true distribution of observed data is almost

never known, one must often make an educated guess about the

parent population from the sample statistics, based on the

empirical distribution function (EDF). The EDF is often

used to compare this observed data to a hypothesized

distribution function (28:2-6). From this "sample" graph,

estimates can be made about the unknown distribution of the

population H(x) by using the EDF.

The empirical distribution function S(x) is the

function of X equal to the fraction of X's that are less

than or equal to X for each X between negative infinity and

positive infinity for the random sample: Xl ,X2 , ... Xn.

That is:

number of values < x
Sn(X)=

total number in' sample (1)

For a sample of n size, the EDF is denoted as Sn(x).

The EDF is always a step function, with each step

height equaling 1/n, with the EDF a non-decreasing function

from zero to one (28:2-7)

- 0 for all X < X,
Sn(X) i/n for X; < Xj1 , i=1,2,...,n-1 (2)

1 for all X > X.

-9-



The Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D), and

the Cramer-von Mises (C-VM) tests for goodness of fit are of

the EDF type (34:730).

Modified Goodness-of-Fit Tests

The current goodness-of-fit test can be used with the

various distributions, "provided there are no unknown

parameters in the hypothesized distribution." (39:1)

Currently there are modified goodness-of-fit tests for the

Weibull, (4;22) Normal, (20;31) Gamma, (34:37) Pareto, (28)

Logistic, (38) Exponential, (21) and the Uniform (35)

distributions.

Woodruff used a Monte Carlo technique to generate

sample observations as well as to develop critical value

tables for the K-S, A-D, and C-VM tests for gamma

distribution with unknown parameters. Similar methods were

used in the other papers in order to develop the modified

goodness-of-fit tests.

Chi-Square Goodness-of-Fit Iet

The Chi-square test can be used for large sample sizes

(ie. more than 50) where the distribution is either discrete

or continuous. This test is particularly well suited for

use when parameters are estimated from the sample, by

maximum likelihood techniques (33:730). The Chi-square

procedure to determine goodness-of-fit begins with placing

-10-



the observations in intervals, or "cells". The test

statistic is as follows:

2 k 2
X = Z (Oi-Ei) /Ei (3)
0 i=1

"where Oi is the observed frequency in the ith class

interval and Ei is the expected frequency in that class

interval." (3:350) The null hypothesis (Ho) for this test

is that the data conforms to the assumed distribution. The

critical value for the test is found in Chi-square tables.

If the test statistic is greater than the value found

through calculation, reject Ho.

Kolmooorov-Smirnov

In Massey's article on the K-S test, he describes the

procedure involved in determining goodness-of-fit with this

test is to "draw the hypothetical cumulative distribution

function on a graph and to draw curves a distance above and

below the hypothetical curve." (23:69) If the observed

distribution, Sn(X), passes outside of this drawn curve at

any point, this distribution is rejected as not fitting the

data (3:269-271).

There are several advantages to using this test to fit

data to a theoretical distribution. First of all, the KS

test is particularly useful when the sample size is small.

It also appears to be more powerful than the Chi-square test

for sample data of any number; however, the standard K-S

test is only applicable when parameters are known about the

-1 1-



data (20:399). The K-S Test statistic is the largest

(denoted "sup" for supremum) vertical distance between the

hypothesized distribution F(X) and the observed EDF, Sn(X)

(28:2-11). The test statistic is

D = Sup JF(X) - Sn(X)I (4)
x

The equivalent computational form is

D = max ( D+, D-) (5)

where Ho is rejected at the given level of significance, if

D is greater than the critical value given at that level

(7:358).

Anderson-Darling

The Anderson-Darling test statistic is a subset of the

C-VM family of statistics. The unique feature of this test

is the incorporation of a weighting function into the K-S

and C-VM test statistics (28:2-13). The A-D test statistic

(2:767) is as follows:

2 002
A = n f[Sn(X) - F(X)] 0 [F(X)]dF(X) (6)

-aO

where 6[F(X)]= F(X)*(1-F(X))"a Its computational form

is

2 n

A -n - (1/n) £ (2*j-l)[ln Z, + ln(1-Z,.,_-1 )] (7)
i=l

where X1 < X2 < ... < Xn are n ordered observations from a

sample and Zj = F(Xj) for j = 1, 2,...n (28:2-14)

-12-



Cramer-von Mises Test

The Cramer-von Mises test is based on the squared

integral of the difference between the observed data, Sn(X),

and the distribution being tested, F(X), (28:2-12). The

C-VM test (2:766) statistic is derived by the following

formula:

2 002
w = n Sn(X) - F(X)] dF(X) (8)

and also its computational form:

2 n 2
w = [1/(12n)] + Z[ -(2*i-I)/2n] (9)

i=1

where XI < X2 <...< Xn are n ordered observations from the

sample. The C-VM goodness-of-fit can be considered a

special case of the A-D statistic where O[F(X)] = 1

(28:2-13).



III. Igsnomal Distribution

Introduction

"The lognormal distribution in its simplest form may be

described as a distribution of a variate whose logarithm

obeys the normal law of probability." (1:1) Although the

lognormal distribution has not been studied as long as the

normal distribution, it's origin can be traced as far back

as 1879 (1:1). The lognormal, by its very nature, has many

properties which are derived from the normal distribution.

There are also those properties possessed by the lognormal

which cannot be easily, if at all, found in normal theory.

History

Probably the most used distributions in statistics is

the normal distribution curve, developed by Gauss in 1809

(18:6). This curve could almost but not completely describe

certain distributions observed by statisticians of the day.

During the late 1800s, attempts were being made to discover

and construct systems of frequency curves that represented a

wider variety of distributions than the normal distribution

curve could describe. These new systems varied from normal

in their skewness; thus they were refered to as "skew

frequency curves" (16:149).

K. Pearson, in 1985, and Charlier, in 1905, appear to

have completed two of the more successful attempts at

-14-



constructing these skewed systems. In 1898, Edgeworth

proposed the concept of transformation which he termed

"method of translation". Since most work at the time dealt

with the normal distribution, the natural course was to

relate the new system to current work on the normal. This

method sought a function of an observed random variable

which was closely related to the normal random variable.

Normal theory was then used on the new "transformed"

variables (18:6). Edgeworth's method was not generally

accepted due to the lack of variety of shapes it could be

used for. This technique did however help to further the

studies of lognormal distributions (18:6).

It appears that it was Galton who suggested the study

of the lognormal when he pointed out that there are

situations where the process of errors is multiplicative

rather than additive as in normal theory (1:2). Galton

explained that if X1 , X2 , ... Xn are n positive,

independent random variables and

nTn = L Xi (10)

i=l

then

n
log(Tn) = £ log(Xi) (11)

i=l

When one applies the Central Limit Theorem to the random

variables, log(Xi), the resulting distribution of log(Tn)

was basically the unit normal distribution as the sample

size tends to infinity and as such, Tn was called the

lognormal (18:7).

-15-



McAlister, in 1879, explicitly and in detail, set down

the theory of the lognormal distribution (1:2). In his

memoir presented to the Royal Society in London that year,

he developed the expressions for mean, median, mode, and

second moment of the lognormal along with the quartiles and

octiles (1:2). According to Aitchison, the next "real"

advance after McAlister's initial paper was that of Kapteryn

in 1903. Kapteryn described a machine for generating

lognormally distributed samples similar to that of Galton,

used for normal or binormal samples (1:3).

Wiskell first the used method of moments to estimate

parameters. He was also the first to consider that simple

displacement of a variate rather than the variate itself is

lognormally distributed (18:7). In this manner, the third

parameter, the threshold parameter, was assigned to the

value of the displacement, thus establishing the 3-LN

distribution (1:4).

ADD lications

Aitchison found that the lognormal distribution can be

used in the study of small particle statistics, economics,

socialogy, biology, anthropometry, household size, physical

and industrial processes, astronomy, and philology (1). The

author notes that this list is in no way inclusive of all

applications of the lognormal distribution. Examples of such

processes include the distribution of personal incomes,

inheritances and bank deposits, and the distribution of

particle sizes (29:33).

-16-



While these are all important uses, current studies

suggest the lognormal distribution will gain more importance

with the Air Force's increased use of simulation models.

"The log-normal distribution has been found to be applicable

in describing time to failure for some types of components,

and the literature seems to indicate increased use of this

distribution in reliability models." (3:134)

Probabilit Distribution Fnction

In Edgeworth's "method of translation", one seeks a

function of the observed random variable which closely

approximates a random variable from the normal distribution.

Johnson states that a variable, X, can be transformed to

normality by a function, f(X). This function must be

specialized and depends on a certain number of parameters

(16:152). His transformation is as follows

z = 7 + 6 f((X- )VX) (12)

where

f is a monotonic function of x and does not depend on

any parameters

z is the unit normal

6 is a shape parameter

Y is a shape parameter

X is the scale parameter

is the location parameter

-17-



The three-parameter lognormal probability density function

(PDF) is derived by allowing the natural logarithmic

function to be the function used in equation (12). By using

natural logarithms, the scale parameter can be dropped

(18:6). For this reason, all logrithms used in this thesis

will be natural logrithms. By substituting these changes

into equation (12), it becomes:

z = Y + 6 ln(x- ) (13)

When equation (13)is applied to the general form of the

normal PDF, the PDF of the displaced lognormal variates

follows:

Y + 6 ln(X- 1

F(X) = 2 2(X-4) exp 2

if x > 4 (14)

F(X) = 0

if x < 4

A more common expression of the lognormal PDF involves the

mean (u ) and the standard deviation (0 ) of the parent

(original) normal distribution, where U = - Y/6 and a'= /6

(18:9). By substituting these into equation (10), the new

PDF is

F(X) : O 2%W(X )[e [-

if x > 4 (15)

F(X) = 0

if x <

-18-



Cumulative Distribution Function

The distribution functiton, also known as the

cumulative distribution function (CDF), of a random

variable, X, is the function that gives the probability that

X is less than or equal to some number x (7:23). The CDF of

a continuous random variable is found by intergrating its

PDF over some given range (18:10).

The CDF, F(x), for the 3-LN is as follows (40:47)

x 2

F(X) = fj ] du (16)U 27 u exp 2 a z

where u = X- .



IV. MAXIM LI/KELIHOOD ESTIMATION

Introduction

Currently, the most used method of parameter estimation

is the maximum likelihood method. Proposed by Daniel

Bernolli in 1778, the concept of maximum likelihood was used

by Gauss in developing his theory of least squares (18:22).

According to Deutsch, maximum likelihood was not generally

used as an estimation technique until 1912, when R.A. Fisher

introduced a generalized recognized form. Fisher published

a series of papers which extended Gauss' concepts to a

comprehensive and unified system of mathematical statistics

which has since had profound and wide development (9:135).

Since then, the maximum likelihood method has been used

successfully on most distributions. Maximum likelihood

estimators (MLEs) have several very desirable properties.

These include the fact that MLEs are consistent,

asymptotically efficient and asympototically sufficient

(25:167). These are properties of any good estimator: in

addition, the MLE possesses a property of invariance

(25:185). These properties will be discussed in more detail

in a later section.

The principle of maximum likelihood consists in

accepting as the best estimate of the parameters, say,

0, &*, ... , OK, those values of the parameters which

maximize the likelihood for a given set of observation, say,

x., xL , ... , x, (30:151). The population has a likelihood
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function, L defined as follows(18:23)

L = L(xL, XI , ... , x,; 6 , 02, . 8 K )

= f ( x ,, x Z , . . . , I , X M, 0 1 1 ,1 . . . , I O )

= f(x..; OL, OL,  ... , J.On)*f (X; ; = (9 , .. , 0 )1
... (x-,; 04., j z  0 . ... O -

= f. (x-; ; 1 , OI ., OK ) (17)

If the population is discrete,

L(Xj, X2 , ... , X; 9) = 17P;(0 ) (18)

where p; (0 ) is the probability associated with the ith

sample (9:135). Since MLEs are invariant, L and log(L) are

maximized at the same values of Oj . The log(L) yields a

sum versus a product, which is more computationally

efficient. For this reason, the logarithm of L is used in

this thesis.

The likelihood function gives the "likelihood" that a

set of random variables came from a certain density function

A A A
(18:23). The values OA, 1, . P 0., are the maximum

likelihood estimators of the parameters 0., 01, , O K "

The process of maximizing the likelihood function is to take

the partical derivative with respect to each parameter and

set them to zero, then solve for the unknown parameters.

This produces a system of k equations and k unknowns. These

are

dL/d6i = 0 i = 1, 2, ... k (19)
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Properties

As stated before, the properties of a maximum

likelihood estimator (MLE) are those of being consistent,

asymptotically efficient, asymptotically sufficient, and

invariance. The concept of consistency is that, if for any

two positive numbers, X and Y, there exists a number no such

at when n exceeds no, the probability

Itn- 01 > X (20)

is less than Y (30:151). This implies that as the sample

size, n, increases the probability that the test statistic,

tn , and parameter, 0 , will differ by any amount will

decrease (30:151). This means as the sample size increases,

the true value of the parameter will be approached. The

estimator with the smallest asymptotic variance is called an

efficient estimate (30:155). The estimator that converges

the quickest to the true value of the parameter is

preferred. The concept of the sufficient statistic, first

developed by R.A. Fisher, states that a statistic that does

exists and contains all the information about parameter that

is in the sample is refered to as a suffient statistic
A

(25:168). If a parameter, 0, has a MLE of 8 , and "U( 0 ) is

a function of 0 with a single-valued inverse, the MLE of
A

U( 9) is U(9)". (25:185)

Eaimaion f 3 Paramet Lgnormnal

In searching through literature on maximum likelihood
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estimation, few articles dealt with the 3 parameter

lognormal distribution. Of those found a common thought

prevailed: maximum likelihood estimation for the 3-LN is

difficult at best.

By using methods previously discussed, the maximum

likelihood equations for each of the three parameters of the

3-LN are (18:26)

A n [ln(X- )](= (21)

n

Al n

z iln(X;-, -

i=1 (22)

A A n 1 n ln(X - )
L £ = 0 (23)=1 x; i=1 .-

According to Keefer (18), E. Wilson and J. Worchester

first attempted to find the maximum likelihood estimator

(MLE) of the three parameter lognormal in 1945 by using a

trial and error method. This method proved to be

"computationally ineffective" and resulted in "extremely

poor parameter estimates" (18:27).

Next, in 1951, A. C. Cohen presented a more efficent

and feasible technique for finding MLEs. He substituted

equations (21) and (22) into equation (23). This produced a

single function, f( ), with one unknown, 4 , the location

parameter. Cohen then solved this equation using inverse

interpolation over some small interval, say ( t ,

-23-



where f( ) < 0. The estimated value of the location

parameter, is then substituted into both equations (21)

A A
and (22), and solved, resulting in P and a7

Cohen also presented an alternate technique of

estimation which is based on least observed value. The

technique requires that

- = exp IP + *to] (24)

where Xo = X, + ( T/2). X, is the least observed sample

value and T, the the interval of precision or the smallest

scale interval used in reading sample measurements (7:209).

To is determined from the relationship

ex [Ldt (25)
-0 -t-

where k is the number of times the least observed value

occurs in the sample (6:209). By taking the natural

logarithms of both sides, equation (24) becomes

log (XO- ) = [/I + c0* to] (26)

Substituting equations (21) and (22) into equation (24),

results in F( ), a function of the location parameter,

equivalent to the MLE of (18:28). A Monte Carlo analysis

of the two techniques described by Cohen show that the

method of least observed sample values provided better

estimates than did the inverse interpolation method (18:28).
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In 1963, B. M. Hill brought to light a significant fact

regarding maximum likelihood estimation of the 3-LN

distribution. He proved there exists a path referred to as

the "path of no return" along which the likelihood function,
A A

L( , ~p ( k ), 01(4 )) of any sample, X1 , XL, ... , , tends

to co as 4 approaches X,, the least observed value, and to a

positive constant as 4 tends toward -oa (14:72). Allowing to

converge to X, along this "path of no return", the estimates
A A A

become unreasonable, namely = X1, P = -00, and O'= +oo

(14:75). To avoid the problem of the "path of no return",

Hill introduced a joint prior distribution for 4 , fl, and T'.

By appling Bayes Theorem, this technique yielded the

conclusion that the likelihood equations should be solved
A A

using 4 , such that 4 satisfies equation (18:28)

n A 1 n j
LX-)A A Z , 0 (27)
i=1 (a(4)

where

A A
(ln(X; - 4)- #( 4)

Zj= A A (28)

In 1966, Dr H. Harter and Dr A. Moore published a paper

reporting their method for 3-LN estimation. Recognizing the

maximum likelihood equations for this distribution could not

be solved algebraically and knowing that the likelihood

function may take the "path of no return" and thus yield

absurd estimates, they developed an iterative technique to
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solve the set of equations. The iterative process involves

estimating the three parameters, one at a time in the

cyclical order U , U , and k , omitting any assumed known

parameters (18:30). To begin, the observed values are

ordered and the initial estimates are chosen; for example,

the initial estimate for 4 is X,, the least observed value.

Next, the iterative process begins; the false position

(iterative linear interpolation) is used to determine the

value, of the parameter being estimated, that satisfies the

likelihood equation for that parameter. If no value of

satisfies the likelihood equation, the possiblity of

encountering the "path of no return" occurs (13:848).

In 1973, C.J. Monlezun and L.A. Klinko, presented a

paper at the thirty sixth annual Meeting of the Institute of

Mathematical Statistics in New York City. In this paper,

the author shows that "when the shape parameter for the

lognormal distribution is assumed known, the likelihood

equations have a unique solution at which the likelihood

function attains its maximum value" (24:2). For this

reason, this paper is used as the basis for the calculations

in this thesis for estimating the MLEs of the 3-LN

distribution.

A random variable X is said to be lognormally

distributed for some constant , less than X; the log (X-4)

has a normal distribution with mean, U , and variance, a2,

and the density of X is then

f M N(2 7r 2 )  ex -In (X-' )1 (29
f(X; , /4, C ) = -* exp 1 (29),

(X- ) 2a2
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for X > By letting L( , 2, a') denote the likelihood

function of n independent observation of X.

As stated in chapter III, the CDF of the lognormal is as

foll 1ows

1 -In ( X- / )
F(X) : (30)(X- E ) a - exr 2az

by setting 4 = in P

F(X) = exp (31)i x- o 2 )r- a

the likelihood function, L, is

L= 1 exp [-2a (ln(X ) )2] (32)i=l ((Xi- )a 2 )

Lnin (33)

Ln L = 1 -ln(X; - ) -ln(a2- ) + ---- (34)i~~l (-2 G

By setting the partial deriviatives to zero, the partial

with respect to the scale parameter is as follows

dLnL/dp = 0 (35)
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results in the equation

n
p = 1( 4) = 1/n * £ log(X; + 4 (36)

i=1

and the partial with respect to the shape parameter yields

the following equation:

dL/do2 = 0 (37)

results in the equation

n
1^,1/n *L (log (X; + ~P)-(P) (38)

i=1

For fixed, L( , , a2 ) reaches a maximum at

( , '( ), 'i( # )). Monlezun shows that for a known shape

parameter 0 , the equation

dL(f )/df = 0 (39)

has a unique solution, say = , that satisfies the

equation,

1 1
+ * (in(X -f )-u) =0 (40)

n
where u = 1/n X ln(X

i=1



V. METHODOLOGY

As stated in chapter I, there were three major phases

in this research effort. The first step in developing the

modified goodness-of-fit test was to construct tables of

critical values by Monte Carlo method. This method was first

used by Lilliefors (1967) in his research of fitting the

normal distribution when the mean and variance were unknown

(36). The next phase was to compare the powers of the

modified goodness-of-fit tests. Finally, the relationship

between the shape parameter and the critical values

generated was determined.

For the first phase, each test procedure was modified

by generating random deviates which followed a lognormal

distribution. The random deviates were then ordered in

ascending order. These ordered deviates were used to

estimate the scale and location parameters using maximum

likelihood estimation (MLE). The next step in the first

phase was the estimate parameters from the n ordered

lognormal deviates and use these estimates to calculate the

hypothesized distribution function (33). Each of the above

steps was repeated 5000 times for each of the statistical

values being tested. The final step was to arrange the

critical values into tabular form for ease in reading and

use of the test statistics.

The second phase of the research, comparing the powers

of the tests involved, tested the null hypothesis that the
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data was from a lognormal distribution. The proportion of

the time that the test rejected this null hypothesis was

counted for each sample taken. The power was the percentage

that the test rejects the null hypothesis.

The final phase of the research was to determine the

relationship, if any, between the shape parameter and the

critical values. This functional formula can be used to

interpolate any values not found in the tables.

The Monte Carlo Method

"Mathematics can be divided into theoretical and

experimential categories." (28:4-1) The primary difference

between the two is that theoreticians deduce conclusions

from postulates, experimentalists arrive at conclusions from

observations (12:1). The Monte Carlo method is a branch of

experimental mathematics where random numbers are generated

to provide data for these experiments to simulate

observations. This method is often used in fields where real

world data is expensive or even impossible to obtain; for

example, when studying nuclear effects.

Identifying Crtia Values

Each group of n lognormal deviates represent a sample

of size n from a lognormal destribution with known

parameters. For this reason, the null hypothesis

"HO: H(X) = lognormal CDF" is true for each sample. Using

the K-S, the A-D, and the C-VM tests for goodness of fit,

5000 independent test statistics were calculated using a

known CDF for each test. The 5000 test statistics for each
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test were then arranged in ascending order using an IMSL

(15) subroutine, VSRTA The next step was to identify the

"critical region", that is, where the test statistic would

wrongly reject the known true null hypothesis (18:4-10).

Next, the critical values are selected according to desired

"level of significance", or a , which is the maximum

probability of rejecting a true null hypothesis.

Since Ho is true for all the calculated test

statistics, and c is the maximum probability of rejecting

H., then 1-a is the minimum probability of correctly

accepting the null hypothesis. The value, 1-ce, is the

percentage of total test statistics within the critical

region. For example, the 95th percentile is a number that

the test statistic will exceed 5% of the time or less and

will be less than with probability of .95 or less (7:39).

Using this system of percentages, the critical values were

determined from the 5000 test statistics.

In the first phase, generating critical value tables, a

FORTRAN program, written by Porter (28), was adapted to

perform the Monte Carlo simulation necessary of this

research objective. The flow chart and code for this

program is located in appendix A.

The nine steps followed in this thesis to accomplish

this are as follow (28:4-19-4-21).

Step 1 - Generate the data. In this thesis, sample

observations were generated by a computer program avaliable

in the International Mathematics Statistics Library (IMSL).

This subroutine, GGLNG, generated lognormal random deviates



from a two-parameter lognormal distribution, to which a

location parameter of say, 10, was added.

Step 2 - Order the data. The random deviates were

arranged in asending order using an IMSL subroutine, VSRTA.

Step 3 - Estimate the parameters. The maximum

likelihood estimators of the scale and location parameters

were found using the method described in chapter I.

Step 4 - Compute hypothesized CDF. Using the estimated

parameters, found in step 3, and the ordered sample

generated in step 2, the hypothesized CDF is calculated.

Step 5 - Calculate the test statistics. The modified

test statistics are calculated using equations (2), (4), and

(6).

Step 6 - Generate 5000 test statistics. Repeat steps 1

thru 5, 5000 times. This is necessary for the Monte Carlo

simulation. This generates 5000 independent test statistics

for each of the three tests, K-S, A-D, and C-VM.

Step 7 - Determine the critical values. The 5000 test

statistics generated in step 6 are ordered using the IMSL

subroutine, VSRTA, Determine the 80th, 85th, 90th, 95th,

and 99th percentile of the 5000 statistics, these correspond

to the .20, .15, .10, .05, and .01 levels of significance.

That is the 4000th test statistic is 80% of the 5000

statistics; therefore, it becomes the critical value for a

significance level of .20.

Step 8 - Repeat for sample size. To study the effect
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of the sample size on critical values, repeat step 1 thru

step 7 for sample size n where n = 5, 10, 15, 20, 25, and 30

Step 9 - Repeat for shape parameters. The known shape

parameter ranged from 1 to 4 in steps of .5.

The critical values calculated are found in tables I, II and

III, found in the chapter that follows.

Comparing Powers

As explained earlier, the probability of correctly

rejecting a false null hypothesis is known as the power of

the test; therefore, the higher the power, the more useful

the test. In this thesis, the null hypothesis was that the

random deviates being tested follow a lognormal distribution

with the shape parameter known (in this thesis, shape = 1

and 3). The alternate hypothesis was that, the deviates

followed a distribution other than the lognormal. A FORTRAN

program, written by Porter (28), was adapted to perform the

power comparison necessary. The flow chart and code for

this program are found in Appendix B.

Step 1 - Generate the data. Random deviates, for

sample size n, were generated using the IMSL subroutines

GGWIB, GGAMR, GGBTR, GGEXN, and GGNML. These alternate

distributions were the Weibull with shape of 3.5, the gamma

with shape of 2.0, the beta with parameters of p=2 and q=3,

and the normal distribution. Two sets of lognormal deviates

were also tested. The first with the shape of 1.0, the

second with shape of 3.0.
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Step 2 - Order the random deviates. The subroutine

VSRTA from IMSL was used to arrange the data in ascending

order.

Step 3 - Estimate the parameters. Using the technique

of maximum likelihood estimation, described in chapter 4,

estimate the scale and location parameters.

Step 4 - Compute the hypothesized distribution

function. Using the estimated parameters, found in step 3,

and the ordered sample generated in step 2, the subroutine

HYPCDF calculates the hypothesized CDF.

Step 5 - Calculate the modified K-S, A-D, and C-VM test

statistics. The modified test statistics are caluclated by

the subroutine TESTAT, using the equations (2), (4), and

(6).

Step 6 - Repeat 5000 times. The Monte Carlo simulation

of observational data uses 5000 repeatitions.

Step 7 - Determine the power of the test. By counting

the number of times the null hypothesis is rejected and

divided by 5000. This is the power of the test.

Step 8 - Repeat for alternate distributions. Repeat

steps 1-7 for each of the alternate distributions; that is,

the Weibull, Gamma, Beta, Exponential, and the Normal.

Step 9 - Repeat for sample size. Repeat steps 1-8 for
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the sample sizes, n=5, 15, and 25.

Step 10 - Repeat for levels of significance. Repeat

steps 1-9 for the levels of significance used in this

thesis; that is, CC= .05 and .01.

Step 11 - Repeat for shape parameters. Repeat steps

1-10 for the Lognormal with shape of 3.0 (in the first

replication, shape = 1.0).

The results of the power comparison study are found in

tables IV and V.

Determinina Functional Relationship

The final stage of this thesis research was determing

the functional relationship, if any, between the known shape

parameters and the modified critical value. This

relationship can be used to find values not located in the

tables generated in this thesis.

This phase of the research was completed using SAS (32)

to preform a quadratic regression. The model used is as

follows:

Y = Be + BX + BFX**2 (41)

where

Y = critical value
X = shape parameter

The results of these linear regressions are located in

Tables VI, VII, and VIII.
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VI. RESULTS

The results of this thesis are such that each research

objective listed in Chapter I has been successfully

completed. Tables containing the Modified Kolmogorov-

Smirnov (K-S), Anderson-Darling (A-D), and Cramer-von Mises

(C-VM) critical values have been generated. The critical

values are documented in Tables I, II, and III. The power of

each of these new tests have been tested using five

alternated distributions and the lognormal (with

shape = 1.0 and 3.0). These values are documented in Tables

IV and V. The third objective has been completed by the

generation of Tables VI, VII, and VIII, showing the

coefficents and the correlation value, R' (which indicates

the percent of total variation explained by the regression

curve).

Critical Value Tables

Table I contains the critical values for the modified

Kolmogorov-Smirnov test. The new Anderson-Darling

statistics are found in Table II. Cramor-von Mises critical

values are located in Table III. Each table includes the

test statistic generated with sample sizes of 5, 10, 15, 20,

25, and 30. The shape parameters ranged from 1 to 4 in

increments of .5. The levels of signifiance used were .20,

.15, .10, .05, and .01.
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TABLE I

CRITICAL VALUES FOR THE MODIFIED K-S TEST

ALPHA N C=1.0 1.5 2.0 2.5 3.0 3.5 4.0

.20 5 0.307 0.292 0.296 0.308 0.322 0.333 0.343

.20 10 0.226 0.230 0.261 0.288 0.309 0.328 0.344

.20 15 0.188 0.204 0.242 0.274 0.297 0.320 0.338

.20 20 0.163 0.190 0.233 0.266 0.292 0.313 0.331

.20 25 0.148 0.179 0.223 0.261 0.286 0.309 0.328

.20 30 0.135 0.170 0.218 0.256 0.282 0.306 0.325

.15 5 0.319 0.306 0.306 0.318 0.332 0.341 0.350

.15 10 0.236 0.240 0.271 0.298 0.319 0.336 0.350

.15 15 0.196 0.213 0.251 0.283 0.305 0.327 0.343

.15 20 0.171 0.197 0.241 0.274 0.299 0.320 0.337

.15 25 0.154 0.187 0.230 0.267 0.293 0.315 0.333

.15 30 0.141 0.178 0.224 0.261 0.288 0.311 0.329

.10 5 0.337 0.322 0.320 0.330 0.343 0.351 0.358

.10 10 0.251 0.254 0.284 0.309 0.329 0.346 0.359

.10 15 0.207 0.224 0.263 0.294 0.315 0.336 0.351

.10 20 0.182 0.208 0.250 0.282 0.307 0.328 0.344

.10 25 0.162 0.196 0.240 0.276 0.301 0.322 0.340

.10 30 0.150 0.187 0.232 0.270 0.295 0.318 0.336

.05 5 0.364 0.345 0.343 0.348 0.358 0.363 0.370

.05 10 0.271 0.276 0.303 0.326 0.343 0.359 0.371

.05 15 0.226 0.241 0.279 0.308 0.328 0.348 0.362

.05 20 0.195 0.222 0.263 0.297 0.319 0.339 0.354

.05 25 0.177 0.211 0.254 0.288 0.313 0.332 0.350

.05 30 0.163 0.201 0.244 0.283 0.306 0.327 0.345

.01 5 0.413 0.387 0.381 0.378 0.380 0.384 0.390

.01 10 0.312 0.317 0.336 0.355 0.370 0.381 0.392

.01 15 0.262 0.272 0.309 0.336 0.352 0.370 0.384

.01 20 0.225 0.255 0.289 0.321 0.342 0.360 0.375

.01 25 0.204 0.241 0.284 0.311 0.333 0.353 0.367

.01 30 0.186 0.229 0.268 0.304 0.327 0.347 0.365
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TABLE II

CRITICAL VALUES FOR THE MODIFIED A-D TEST

ALPHA N C=1.0 1.5 2.0 2.5 3.0 3.5 4.0

.20 5 0.606 0.455 0.474 0.533 0.604 0.665 0.728

.20 10 0.588 0.573 0.825 1.079 1.279 1.463 1.641

.20 15 0.599 0.732 1.191 1.638 1.963 2.279 2.564

.20 20 0.595 0.910 1.586 2.198 2.686 3.122 3.515

.20 25 0.593 1.055 1.937 2.775 3.390 3.960 4.480

.20 30 0.598 1.223 2.315 3.352 4.093 4.814 5.408

.15 5 0.660 0.493 0.515 0.572 0.643 0.700 0.761

.15 10 0.652 0.637 0.901 1.148 1.354 1.529 1.700

.15 15 0.663 0.805 1.294 1.725 2.051 2.375 2.652

.15 20 0.657 1.002 1.706 2.310 2.804 3.228 3.607

.15 25 0.654 1.156 2.057 2.904 3.518 4.088 4.583

.15 30 0.659 1.350 2.466 3.502 4.238 4.936 5.532

.10 5 0.742 0.547 0.562 0.626 0.692 0.749 0.801

.10 10 0.744 0.726 0.993 1.240 1.443 1.616 1.767

.10 15 0.739 0.910 1.411 1.855 2.179 2.483 2.753

.10 20 0.739 1.127 1.842 2.447 2.941 3.372 3.727

.10 25 0.744 1.287 2.225 3.074 3.681 4.246 4.717

.10 30 0.750 1.511 2.638 3.698 4.431 5.118 5.688

.05 5 0.904 0.636 0.648 0.705 0.766 0.810 0.863

.05 10 0.899 0.860 1.143 1.389 1.586 1.736 1.886

.05 15 0.900 1.052 1.598 2.030 2.372 2.641 2.922

.05 20 0.906 1.302 2.056 2.678 3.156 3.563 3.910

.05 25 0.898 1.524 2.497 3.337 3.941 4.463 4.924

.05 30 0.891 1.759 2.927 3.974 4.688 5.394 5.932

----------------------------------------------------------

.01 5 1.279 0.816 0.796 0.839 0.882 0.928 0.963

.01 10 1.247 1.162 1.413 1.638 1.826 1.941 2.092

.01 15 1.296 1.379 1.962 2.457 2.708 2.947 3.201

.01 20 1.274 1.788 2.452 3.135 3.514 3.952 4.219

.01 25 1.242 2.006 3.019 3.798 4.364 4.876 5.330

.01 30 1.244 2.333 3.450 4.520 5.213 5.830 6.404

-----------------------------------------------------
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TABLE III

CRITICAL VALUES FOR THE MODIFIED C-VM TEST

ALPHA N C=1.0 1.5 2.0 2.5 3.0 3.5 4.0

.20 5 0.091 0.080 0.086 0.099 0.113 0.126 0.138

.20 10 0.091 0.100 0.149 0.199 0.240 0.280 0.316

.20 15 0.092 0.126 0.210 0.297 0.365 0.433 0.493

.20 20 0.091 0.153 0.277 0.396 0.499 0.590 0.673

.20 25 0.091 0.175 0.334 0.498 0.626 0.746 0.856

.20 30 0.091 0.202 0.396 0.599 0.757 0.906 1.032

.15 5 0.100 0.087 0.094 0.107 0.122 0.134 0.146

.15 10 0.101 0.114 0.164 0.214 0.257 0.296 0.331

.15 15 0.103 0.141 0.231 0.318 0.385 0.455 0.512

.15 20 0.102 0.171 0.301 0.421 0.525 0.616 0 695

.15 25 0.102 0.195 0.359 0.524 0.656 0.776 0.881

.15 30 0.102 0.226 0.425 0.631 0.786 0.934 1.061

.10 5 0.113 0.098 0.106 0.119 0.134 0.146 0.155

.10 10 0.115 0.132 0.185 0.233 0.278 0.316 0.347

.10 15 0.117 0.162 0.256 0.345 0.413 0.480 0.536

.10 20 0.117 0.195 0.331 0.451 0.556 0.649 0.724

.10 25 0.116 0.221 0.393 0.562 0.693 0.813 0.912

.10 30 0.115 0.253 0.463 0.674 0.830 0.975 1.097

.05 5 0.133 0.117 0.125 0.137 0.151 0.160 0.170

.05 10 0.141 0.161 0.218 0.269 0.310 0.343 0.375

.05 15 0.142 0.190 0.298 0.385 0.458 0.518 0.577

.05 20 0.142 0.232 0.374 0.502 0.604 0.693 0.765

.05 25 0.141 0.266 0.452 0.621 0.749 0.862 0.961

.05 30 0.141 0.302 0.522 0.734 0.886 1.037 1.153

.01 5 0.172 0.154 0.159 0.170 0.178 0.187 0.193

.01 10 0.197 0.223 0.277 0.325 0.366 0.394 0.425

.01 15 0.199 0.258 0.374 0.479 0.534 0.588 0.643

.01 20 0.202 0.323 0.456 0.603 0.686 0.781 0.840

.01 25 0.204 0.358 0.559 0.723 0.844 0.956 1.058

.01 30 0.199 0.414 0.636 0.854 1.007 1.139 1.263

----------------------------------------------------------
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Power Comars Tables

The results from the power comparison program are found

in tables IV and V. For each table, the sample size varied

as n = 5, 15, and 25 and the power comparisons are shown at

the significance levels of .05 and .01.

The first column of the power comparison tables is

approximately the level of significance since the null

hypothesis, that the observed sample came from a lognormal

distribution, is true. In Table IV, the data came the

lognormal with shape of 1; in Table V, the first column

contained data from a lognormal distribution with shape

of 3. In the last five columns of the tables, the data did

come from five different distributions and the values shown

under these headings are the respective powers against

accepting the data as lognormally distributed, given that it

came from the respective distributions. The alternate

distributions included in the power comparison were the

Weibull with shape of 3.5, the gamma with shape of 2, the

beta with p=2 and q=3, the exponential with mean of 2 and

the normal distribution.

Regression Tables

Tables VI, VII, and VIII document the relationship

between the modified critical values for the three different

tests and the shape parameter. These tables can be used to

find critical values not included in the tables generated

(Tables VI, VII, and VIII). For observed sample size of 10,

15, 20, 25, and 30, with a shape parameter betweem 1.0 and

4.0, and a level of significance of .20, .15, .10, .05, and
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TABLE IV
POWER TEST FOR THE LOGNORMAL DISTRIBUTION

H0 : LOGNORMAL DISTRIBUTION AT SHAPE C = 1.0
HA: THE DATA FOLLOW ANOTHER DISTRIBUTION

LEVEL OF SIGNIFICANCE = .05

ALTERNATE DISTRIBUTIONS

N TEST LOG.1 WEIBL GAMMA BETA EXPON NORML

5 K-S 0.050 0.130 0.054 0.102 0.056 0.131
5 A-D 0.050 0.026 0.016 0.026 0.036 0.021
5 CVM 0.050 0.111 0.047 0.091 0.052 0.109

15 K-S 0.041 0.589 0.128 0.343 0.065 0.600
15 A-D 0.044 0.665 0.108 0.387 0.051 0.680
15 CVM 0.041 0.719 0.148 0.448 0.064 0.728

25 K-S 0.052 0.880 0.222 0.633 0.091 0.892
25 A-D 0.053 0.952 0.249 0.777 0.072 0.952
25 CVM 0.055 0.952 0.286 0.780 0.089 0.956

LEVEL OF SIGNIFICANCE = .01

ALTERNATE DISTRIBUTIONS

N TEST LOG.1 WEIBL GAMMA BETA EXPON NORML

5 K-S 0.008 0.025 0.007 0.015 0.008 0.023
5 A-D 0.010 0.000 0.003 0.003 0.006 0.000
5 CVM 0.010 0.024 0.010 0.016 0.010 0.025

15 K-S 0.010 0.303 0.036 0.130 0.016 0.341
15 A-D 0.011 0.358 0.022 0.135 0.006 0.400
15 CVM 0.010 0.476 0.046 0.221 0.016 0.527

25 K-S 0.009 0.703 0.077 0.349 0.018 0.729
25 A-D 0.013 0.840 0.091 0.514 0.012 0.863
25 CVM 0.012 0.842 0.110 0.531 0.016 0.873

NOTE: Since H is true, the LOG.1 column contains the level of
signifi~ance
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TABLE V
POWER TEST FOR THE LOGNORMAL DISTRIBUTION

H0 : LOGNORMAL DISTRIBUTION AT SHAPE C = 3.0
HA: THE DATA FOLLOW ANOTHER DISTRIBUTION

LEVEL OF SIGNIFICANCE = .05

ALTERNATE DISTRIBUTIONS

N TEST LOG.3 WEIBL GAMMA BETA EXPON NORML

5 K-S 0.055 0.229 0.091 0.189 0.052 0.221
5 A-D 0.052 0.267 0.104 0.229 0.051 0.260
5 CV 0.053 0.256 0.105 0.209 0.052 0.260

15 K-S 0.065 0.879 0.285 0.749 0.080 0.861
15 A-D 0.058 0.813 0.287 0.632 0.070 0.814
15 CV 0.058 0.805 0.281 0.608 0.068 0.808

25 K-S 0.041 0.990 0.419 0.962 0.061 0.980
25 A-D 0.044 0.960 0.424 0.844 0.053 0.951
25 CV 0.043 0.958 0.415 0.835 0.052 0.955

LEVEL OF SIGNIFICANCE = .01

ALTERNATE DISTRIBUTIONS

N TEST LOG.3 WEIBL GAMMA BETA EXPON NORML

5 K-S 0.011 0.074 0.020 0.047 0.011 0.063
5 A-D 0.010 0.074 0.025 0.066 0.013 0.072
5 CV 0.011 0.077 0.026 0.060 0.014 0.078

15 K-S 0.016 0.663 0.095 0.425 0.014 0.684
15 A-D 0.012 0.585 0.095 0.340 0.013 0.623
15 CVM 0.012 0.584 0.096 0.332 0.013 0.625

25 K-S 0.012 0.942 0.194 0.815 0.017 0.929
25 A-D 0.011 0.873 0.211 0.623 0.013 0.883
25 CVM 0.011 0.870 0.211 0.620 0.012 0.888

NOTE: Since H is true, the LOG.3 column contains the level of
signifi2 ance
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Table VI

2
COEFFICIENT AND R VALUES OF THE RELATIONSHIP
BETWEEN KOLMOGOROV-SMIRNOV CRITCAL VALUES

AND LOGNORMAL SHAPE PARAMETERS
1.0 < shape < 4.0

LEVEL OF SIGNIFICANCE

n Coef f .20 .15 .10 .05 .01
-I.----------------------- ---------------------------------------------

10 bO .1739 .1809 .1995 .2229 .2756
bi .0456 .0492 .0455 .0438 .0330
b2 -. 0006 -. 0015 -. 0012 -. 0015 -. 0009

le.9837 .9813 .9806 .9844 .9864
--- - -- - - - - - - - - - - - - - - - - - - - - -

15 bO .1138 .1166 .1279 .1508 .1941
bl .0724 .0766 .0791 .0748 .0663
b2 I-. 0040 -. 0050 -. 0057 -. 0054 -. 0046

RZ.9925 .9923 .9918 .9907 .9857

20 bO .0687 .0755 .0895 .0999 .1380
bi .0980 .0992 .0962 .0998 .0931
b2 I-. 0080 -. 0084 -. 0080 -. 0090 -. 0084

Rz.9963 .9955 .9961 .9959 .9983

25 bO .0459 .0508 .0569 .0741 .1029
bi .1071 .1092 .1122 .1105 .1116
b2 I-.0091 -.0096 -.0103 -.0104 -.0114

RE.9968 .9977 .9978 .9981 .9986
- - - - -- ................................................................

30 bO i .0239 .0303 .0400 .0529 .0794
bi .1180 .1186 .1181 .1190 .1180
b2 -.0106 -.0110 -.0110 -.0115 -.0117

R2.9974 .9984 .9982 .9981 .9994

Relationship between the critical values Y and the shape
Parameter X, is:

Y=bO +bl X +b2 X wherel1.0< X <4.0

-43-



Table VII

2
COEFFICIENT AND R VALUES OF THE RELATIONSHIP

BETWEEN ANDERSON-DARLING CRITCAL VALUES
AND LOGNORMAL SHAPE PARAMETERS

1.0 < shape < 4.0

LEVEL OF SIGNIFICANCE

n Coeff .20 .15 .10 .05 .01
-- -------------------------------

10 bO .2302 .2714 .3439 .4818 .9189
bl .2621 .2884 .3102 .3250 .2204
b2 .0246 .0192 .0137 .0087 .0203

RZ .9798 .9787 .9762 .9697 .9566

15 bO -.2262 -.1993 -.1989 -.0882 .2266
bl .7446 .7903 .8850 .9346 1.0076
b2 -.0095 -.0171 -.0348 -.0438 -.0644

RP .9898 .9902 .9906 .9883 .9771
-I---------------------------------------------------------------

20 bO -.7278 -.7462 -.7369 -.6701 -.3786
bl 1.2722 1.3738 1.4700 1.5853 1.7239
b2 -. 0504 -.0690 -.0860 -.1080 -.1416

e .9940 .9944 .9952 .9945 .9962

25 bO -1.2097 -1.2433 -1.2690 -1.2689 -1.0561
bl 1.7603 1.8785 2.0231 2.2314 2.4490
b2 -.0817 -.1027 -.1290 -.1691 -.2134

R. 9947 .9950 .9953 .9963 .9980
---------------------------------------

30 bO -1.7126 -1.7585 -1.8011 -1.8176 -1.6433
bl 2.2902 2.4366 2.6084 2.8267 3.1191
b2 -.1239 -.1507 -.1814 -.2203 -.2776

R .9953 .9961 .9965 .9976 .9990

Relationship between the critical values Y and the shape
Parameter X, is:

Y = bO + bl X + b2 X where 1.0 < X < 4.0
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Table VIII

2
COEFFICIENT AND R VALUES OF THE RELATIONSHIP

BETWEEN CRAMER-VON MISES CRITCAL VALUES
AND LOGNORMAL SHAPE PARAMETERS

1.0 < shape < 4.0

LEVEL OF SIGNIFICANCE

n Coeff .20 .15 .10 .05 .01
-------------------------------------------------------------------

10 bO .0134 .0164 .0201 .0328 .0864
bl .0633 .0722 .0853 .1018 .1080
b2 .0034 .0020 -.0005 -.0038 -.0057

RZ .9889 .9903 .9909 .9907 .9932
---- -----------------------------------------------------------------
15 bO -.0611 -.0636 -.0667 -.0651 -.0525

bl .1380 .1542 .1755 .2022 .2561
b2 .0006 -.0021 -.0058 -.0101 -.0205

R .9934 .9937 .9944 .9937 .9915
------------------------------------------------------------------

20 bO -. 1478 -.1564 -.1606 -.1681 -.1476
bl .2249 .2488 .2729 .3127 .3681
b2 -.0044 -.0084 -.0124 -.0194 -. 0300

R? .9951 .9954 .9961 .9964 .9974
-I----------------------- ----------------------------------------------

25 bO -.2250 -.2354 -.2529 -.2706 -.2480
bl .2990 .3250 .3637 .4195 .4771
b2 -.0065 -.0108 -.0174 -.0275 -.0377

RZ  .9951 .9955 .9959 .9970 .9983
-I---------------------------------------------------------------

30 bO -.3110 -.3216 -.3486 -.3600 -.3665
bl .3851 .4139 .4624 .5121 .6045
b2 -.0114 -.0163 .0245 -.0329 -.0493

Rz  .9954 .9961 .9964 .9975 .9991

Relationship between the critical values Y and the shape
Parameter X, is:

Y = bO + bl X + b2 X where 1.0 < X , 4.0
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.01, the coefficients, Bo, B-, and B2 , found in Table VI can

be substituted into the equation Y=B,+B.1*X + Bz*(X**2) to

find the K-S critical values not found in Table I. Tables

VII and VIII can be used similarily for the A-D and the C-VM

critical values, respectively. These regression tables also

contain the RZ value which indicates the percent of total

variation explained by the regression. This means, the

closer the R value is to 1, the stronger the regression

model is in calculating the additional critical values.

Recommendations

This thesis is the latest in a series of research done

on modified goodness-of-fit statistics for various

distributions. Follow on study could be varing the

parameter of the program that generated the critical values.

By rerunning the current program with different sample sized

or shape parameters, the effect of larger sample sizes on

the modified tests can be studied.

Other branches to investagate could include using

estimators other than the Maximum Likelihood Estimators for

parameter estimation. By increasing the sample size, the

Chi-square may be brought more into consideration while

comparing the power of the other three tests.

This type of research can become increasingly useful

with the current trend of increased use of simulation models

in both the private and military arena. Since real world

data seldom have known parameters, this non-parametric

testing will become more nd more helpful in modeling real

world events.
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APPENDIX A

Flow Chart for Program Critical

Computer Program and Subroutines
for Generating Critical Value

Tables for Modifed Goodness-of-Fit
Tests



~STEP 1

Subroutine Generate n Random
LOGDEV Lognormal Deviates

STEP 2

LOGDEV Order Random
Lognormal Deviates

STEP 3

MLE Estimate Location
CALC and Scale Parameters

STEP 4
HYPCDF Determine Hypothesized

Distribution Function

STEP 5
Calculate Modified

TESTAT K-S, A-D, and C-VM
Test Statistics

Fig 1. Flow chart for Program CRITICAL
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AfB

MAIN STEP 6
Do loop 60 Repeat 5000

STEP 7
Determine 80th, 85th,

CRTVAL 90th, 95th, and 99th
Percentiles

/ STEP 8

MAIN Repeat for
Do loop 80 n = 5(5)30

/STEP 9

MAIN "Repeatfor
Do loop 90 Shape=1

Fig 1 (Continued). Flow Chart for Program Critical
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* PROGRAM CRITICAL
******************** ** ***** *** **** ** *** ******** *** *

• PROGRAM FOR LOGNORMAL GOODNESS-OF-FIT TESTS

* PURPOSE: 1. GENERATE CRITICAL VALUE TABLES FOR THE MODIFIED
• K-S, A-D, AND C-VM TESTS FOR THE THREE-
* PARAMETER LOGNORMAL DISTRIBUTION WHEN LOCATION
• AND SCALE PARAMETERS MUST BE ESTIMATED FROM THE
• SAMPLE
,
* VARIABLES:
• DSEED = RANDOM NUMBER SEED
*C = SHAPE PARAMETER
* X = ARRAY OF LOGNORMAL RANDOM DEVIATES

N = SAMPLE SIZE
• NC = SAMPLE SIZE * SHAPE PARAMETER
• AMLE = MLE OF THE LOCATION PARAMETER
* BMLE = MLE OF THE SCALE PARAMETER

P = ARRAY OF N POINTS OF HYPOTHESIZED CDF
* PCT = PERCENTILE VALUE
• KS = ARRAY OF VALUES OF MOD. K-S TEST STATISTIC
* AD = ARRAY OF VALUES OF MOD. A-D TEST STATISTIC
* CVM = ARRAY OF VALUES OF MOD. C-VM TEST STATISTIC
• IT = ITERATION COUNTER (5000 REQ. FOR MONTE CARLO)
* NSIZ = SAMPLE SIZE COUNTER
• NSHP = SHAPE PARAMETER COUNTER
* NPCT = PERCENTILE COUNTER
• NST = NUMBER OF REPETITIONS
* KSCRIT = ARRAY OF K-S CRITICAL VALUES
• ADCRIT = ARRAY OF A-D CRITICAL VALUES
* CVCRIT = ARRAY OF C-VM CRITICAL VALUES
* Y = ARRAY OF PLOTTING POSITIONS
* ALPHA = LEVEL OF SIGNIFICANCE

*INPUTS:
• NST NUMBER OF REPETITIONS
• DSEED = RANDOM NUMBER SEED

* SUBROUTINES:
• LOGDEV - GENERATES N ORDERED LOGNORMAL DEVIATES
• FILL - ZEROS ALL ARRAYS
• MLE - CALCULATES MAXIMUM LIKELIHOOD ESTIMATORS
* CALC - PERFORMS NECESSARY CALCULATION FOR MLE
• HYPCDF - COMPUTES THE HYPOTHESIZED LOGNORMAL CDF
• TESTAT - CALCULATES THE K-S, A-D, C-VM TEST STATISTICS
• CRTVAL - DETERMINES CRIT. VALUES FROM PLOTTING POSITIONS
,
• IMSL SUBROUTINES:
* GGNLG - GENERATES LOGNORMAL RANDOM DEVIATES
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. VRSTA - ORDERS DATA IN ASCENDING VALUE
* MDNOR - CALCULATES THE NORMAL PDF OF AN OBSERVATION

* OUTPUTS:
* KSCRIT = 3-D ARRAY OF CRITICAL VALUES FOR MOD. K-S TEST
* ADCRIT 3-D ARRAY OF CRITICAL VALUES FOR MOD. A-D TEST
* CVCRIT = 3-D ARRAY OF CRITICAL VALUES FOR MOD.C-VM TEST

| *

C
PROGRAM CRITICAL

C
COMMON DSEED,X,N,C,NC,AMLE,BMLE,P,PCT,

1 KS,AD,CVM,IT,NSIZ,NSHP,NPCT,NST,
1 KSCRIT,ADCRIT,CVCRIT,Y

INTEGER N,NSIZ,NSHP, IT,NPCT,NST
REAL X(31),AMLE,BMLE,KS(5000,6,7),AD(5000,6,7),

1 CVM(5000,6,7),C,NC,P(30),
I KSCRIT(6,8,5),ADCRIT(6,8,5),CVCRIT(6,8,5),PCT,
1 Y(5002),ALPHA
DOUBLE PRECISION DSEED

C
** OPEN OUTPUT FILES TO STORE COMPUTED CRITICAL VALUES:
C

OPEN (UNIT=7,FILE='CRITICAL',STATUS='NEW')
C
** NUMBER OF TEST STATISTICS TO BE USED ON EACH RUN:
C
C PRINT*,'THE MONTE CARLO ANALYSIS WILL REQUIRE'
C PRINT*,' 5000 TEST STATISTICS.'
C PRINT*,'ENTER THE NUMBER TO BE USED FOR THIS RUN:'
C READ*,NST
C

NST = 5000
C

CALL FILL
C
** CALCULATE 5002 PLOTTING POSITIONS ON THE Y-AXIS:
C

Y(0) = 0.0
DO 10 I = 1,NST

Y(I) = (I-0.3)/(NST + 0.4)
10 CONTINUE
C

Y(NST + 1) = 1.0
C
C PRINT*,'ENTER RANDOM NUMBER SEED OR "1." FOR DEFAULT:'
C READ*,DSEED
C IF (DSEED .EQ. 1.) DSEED = 123457.ODO
C PRINT*,'
C PRINT*, 'STANDBY . . COMPUTATIONS IN PROGRESS'
C
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DSEED = 123457.ODO
C

NSHP = 0
C
** BEGIN DO LOOP 90 FOR SHAPE PARAMETER VALUES C=1.0(.5)4.0 **
C

DO 90 SHAPE = 1.0,4.0,.5
C = SHAPE
NSHP = NSHP + 1

C
** WRITE HEADINGS FOR OUTPUT DATA:
C

WRITE(7,52)
WRITE(7,51)
WRITE(7,52)
WRITE(7,54)
WRITE(7,52)
WRITE(7,56)

C
NSIZ = 0

C
** BEGIN DO LOOP 80 FOR SAMPLE SIZES N=5(5)30
C

DO 80 NSAMP = 5,30,5
N = NSAMP
NSIZ = NSIZ + 1
NC = N * C

C
WRITE(7,58)

C
BEGIN DO LOOP 60 FOR 5000 ITERATIONS ***

C
DO 60 IT = 1,NST

C
** PERFORM STEPS 1&2 OF FIG 6: **
C

CALL LOGDEV
C
** PERFORM STEP 3 OF FIGURE 6: **
C

CALL MLE
C
** PERFORM STEP 4 OF FIGURE ***
C

CALL HYPCDF
C
** PERFORM STEP 5 OF FIGURE ***
C

CALL TESTAT
C
60 CONTINUE

C
** END DO LOOP 60 FOR 5000 ITERATIONS **
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C
** PERFORM STEP 7 OF FIGURE 6: **
C

DO 70 NPCT = 1,5
C

CALL CRTVAL
C

WRITE(7,62),l.-PCT,N,C,KSCRIT(NSIZ,NSHP,NPCT),
1 ADCRIT(NSIZ,NSHP,NPCT),CVCRIT(NSIZ,NSHP,NPCT)

C

70 CONTINUE
C

END DO LOOP 70 FOR PERCENTILES
C
80 CONTINUE

C
END DO LOOP 80 FOR PERCENTILES

C
90 CONTINUE

C
*** END DO LOOP 90 FOR SHAPE PARAMETER VALUES C=1.0(.5)4.0 ***
C

*** OUTPUT INSTRUCTIONS: THE FOLLOWING FORMATS THE OUTPUT ***
THE DATA TO A FILE TO BE PRINTED OUT IN HARDCOPY

C
*** WRITE KS CRITICAL VALUE TABLES TO FILE BY ALPHA LEVEL ***
C

WRITE(7,52)
WRITE(7,130)
WRITE(7,52)
WRITE(7,132)
WRITE(7,52)
WRITE(7,200)
WRITE(7,201)
WRITE(7,52)

C
NPCT = 0

C
*** BEGIN DO LOOP 105 TO SORT CRITICAL VALUES BY ALPHA LEVEL***
C

DO 105 NPCT = 1,5
C

IF (NPCT .NE. 5) ALPHA = .25 - (.05*NPCT)
IF (NPCT .EQ. 5) ALPHA = .01

C
NSIZ = 0

N=0
C

BEGIN DO LOOP 107 TO SORT OUTPUT BY SAMPLE SIZE ***
C

DO 107 NSIZ = 1,6

A-6



C
N = 5 * NSIZ

C
WRITE(7,120),ALPHA,N,KSCRIT(NSIZ,1,NPCT),KSCRIT

1 (NSIZ,2,NPCT),KSCRIT(NSIZ,3,NPCT),KSCRIT(NSIZ,
1 4,NPCT),KSCRIT(NSIZ,5,NPCT),KSCRIT(NSIZ,6,NPCT),
1 KSCRIT(NSIZ,7,NPCT)

C
107 CONTINUE

C
•** END DO LOOP 107 AFTER SORTING OUTPUT BY SAMPLE SIZE ***
C

WRITE(7,201)
C
105 CONTINUE

C
*** END DO LOOP 105 AFTER SORTING OUTPUT BY ALPHA LEVEL ***
C
• ** WRITE AD CRITICAL VALUE TABLES TO FILE BY ALPHA LEVEL ***
C

WRITE(7,52)
WRITE(7,140)
WRITE(7,52)
WRITE(7,142)
WRITE(7,52)
WRITE(7,200)
WRITE(7,201)
WRITE(7,52)

C
NPCT = 0

C
*** BEGIN DO LOOP 115 TO SORT CRITICAL VALUES BY ALPHA LEVEL***
C

DO 115 NPCT = 1,5
C

IF (NPCT .NE. 5) ALPHA = .25 - (.05*NPCT)
IF (NPCT .EQ. 5) ALPHA = .01

C
NSIZ = 0
N = 0

C
BEGIN DO LOOP 117 TO SORT OUTPUT BY SAMPLE SIZE ***

C
DO 117 NSIZ = 1,6
N = 5 * NSIZ

C
WRITE(7, 120) ,ALPHA,N,ADCRIT(NSIZ,1,NPCT) ,ADCRIT

1 (NSIZ,2,NPCT),ADCRIT(NSIZ,3,NPCT),ADCRIT(NSIZ,
1 4,NPCT),ADCRIT(NSIZ,5,NPCT),ADCRIT(NSIZ,6,NPCT),
1 ADCRIT(NSIZ,7,NPCT)

C
117 CONTINUE

C
END DO LOOP 117 AFTER SORTING BY SAMPLE SIZE ***

A-7



C

WRITE(7,201)
C
115 CONTINUE

C
END DO LOOP 115 AFTER SORTING OUTPUT BY ALPHA LEVEL ***

C
WRITE(7,52)
WRITE(7,150)
WRITE(7,52)
WRITE(7,152)
WRITE(7,52)
WRITE(7,200)
WRITE(7,201)
WRITE(7,52)

C
NPCT = 0

C
*** BEGIN DO LOOP 125 TO SORT CRITICAL VALUES BY ALPHA LEVEL***
C

DO 125 NPCT = 1,5
C

IF (NPCT .NE. 5) ALPHA = .25 - (.05*NPCT)
IF (NPCT .EQ. 5) ALPHA = .01

C
NSIZ = 0
N=0

C
*** BEGIN DO LOOP 127 TO SORT CRITICAL VALUES BY ALPHA LEVEL***
C

DO 127 NSIZ = 1,6
N = 5 * NSIZ

C
WRITE(7,120),ALPHA,N,CVCRIT(NSIZ,1,NPCT),CVCRIT

1 (NSIZ,2,NPCT),CVCRIT(NSIZ,3,NPCT),CVCRIT(NSIZ,
1 4,NPCT),CVCRIT(NSIZ,5,NPCT),CVCRIT(NSIZ,6,NPCT),
1 CVCRIT(NSIZ,7,NPCT)

C
127 CONTINUE

C
END DO LOOP 127 AFTER SORTING BY SAMPLE SIZE ***

C
WRITE(7,201)

C
125 CONTINUE

C
END DO LOOP 125 AFTER SORTING OUTPUT BY ALPHA LEVEL ***

C
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51 FORMAT('**********************)
52 FORHAT(' '
54 FORMAT(' "'LOGNORMAL CRITICAL VALUES FOR SHAPE C **v
56 FORMAT(' ALPHA',3X,'N',4X,'C',7X,'KS',8X,'AD',8X,'CVM')
58 FORMAT( --------------------------------------

62 FORMAT(' ',T3,F3.2,I5,F6.1,3Fl0.4)
120 FORMAT(' ',T3,F3.2,15,F8.3,7F9.3)
130 FORMAT('1',36X,'TABLE I')
132 FORMAT(20X,'CRITICAL VALUES FOR THE MODIFIED K-S TEST')
140 FORMrAT('l',36X,'TABLE II')
142 FORMAT(20X,'CRITICAL VALUES FOR THE MODIFIEL A-D TEST')
150 FORMAT('1',35X,'TABLE III')
152 FORMAT(19X,'CRITICAL VALUES FOR THE MODIFIED C-VM TEST')
200 FORMAT(' ALPHA',3X,'N',4X,'C=1.O',5X,'1.5',6X,

1 '2.0' ,6X, '2.5' ,6X, '3.0' ,6X, '3.5' ,6X,'4.0')
201 FORMAT(73('-'))

C
CLOSE(7)

C
END

C
** END MAIN PROGRAM

C
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* PURPOSE: TO FILL ALL ARRAYS USED IN THIS PROGRAM WITH THE
* VALUE OF 0

* VARIABLES:
* X = ARRAY OF LOGNORMAL RANDOM DEVIATES
* P = ARRAY OF N POINTS OF HYPOTHESIZED CDF
* KS = ARRAY OF VALUES OF MOD. K-S TEST STATISTIC
* AD = ARRAY OF VALUES OF MOD. A-D TEST STATISTIC
* CVM = ARRAY OF VALUES OF MOD. C-VM TEST STATISTIC
* KSCRIT = ARRAY OF K-S CRITICAL VALUES
* ADCRIT = ARRAY OF A-D CRITICAL VALUES
* CVCRIT = ARRAY OF C-VM CRITICAL VALUES

C
SUBROUTINE FILL

C
COMMON DSEED,X,N,C,NC,AMLE,BMLE,P,PCT,

1 KS,AD,CVM,IT,NSIZ,NSHP,NPCT,NST,
1 KSCRIT,ADCRIT,CVCRIT,Y

INTEGER N,NSIZ,NSHP,IT,NPCT,NST
REAL X(31),AMLE,BMLE,KS(5000,6,7),AD(5000,6,7),

1 CVM(5000,6,7),C,NC,P(30),
1 KSCRIT(6,8,5),ADCRIT(6,8,5),CVCRIT(6,8,5),PCT,
1 Y(5002),ALPHA
DOUBLE PRECISION DSEED

C
DO 10 I=1,31

X(I) = 0.0
10 CONTINUE

C
DO 20 1=1,30

P(I) = 0.0
20 CONTINUE

C
DO 30 1=1,6

C
DO 40 J=1,7

C
DO 50 K=1,5000

C
KS(K,I,J)=0.0
AD(K, I,J)=O.0
CVM(K.I,J)=0.0

C
50 CONTINUE

C
DO 60 L=1,5

C
KSCRIT(I,J,L)=0.0
ADCRIT(I,J,L)=0.0
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CVCRIT(I,J,L)=O.0
C
60 CONTINUE

C
40 CONTINUE

C
30 CONTINUE

C
RETURN

C
END

C
*** END SUBROUTINE FILL **
C
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* PURPOSE: TO GENERATE N RANDOM DEVIATES FROM A LOGNORMAL
* DISTRIBUTION WHOSE PARENT NORMAL HAS MEAN OF 0 AND
* STANDARD DEVIATION OF 1. THE PROGRAM THEN ADDS A
, LOCATION PARAMETER OF 10 TO EACH DEVIATE TO
, PRODUCE THE THREE-PARAMETER LOGNORMAL
* DEVIATE FROM THE TWO-PARAMETER LOGNORMAL.

* VARIABLES:
* DSEED = RANDOM NUMBER SEED
* X = ARRAY OF LOGNORMAL RANDOM DEVIATES
* N = SAMPLE SIZE
. PMU = MEAN OF PARENT NORMAL OF LOGNORMAL
* PVAR = VARIANCE OF PARENT NORMAL OF LOGNORMAL

* IMSL SUBROUTINES:
* GGLNG - GENERATES LOGNORMAL RANDOM DEVIATES
* VRSTA - ORDERS DATA IN ASCENDING VALUE

C
SUBROUTINE LOGDEV

C
COMMON DSEED,X,N,C,NC,AMLE,BMLE,P,PCT,

1 KS,AD,CVM,IT,NSIZ,NSHP,NPCT,NST,
1 KSCRIT,ADCRIT,CVCRIT,Y
INTEGER N,NPCT,NSIZ,NSHP, IT,NST
REAL X(31),AMLEBMLE,KS(5000,6,7),AD(5000,6,7),

1 CVM(5000,6,7),C,NC,P(30),
1 KSCRIT(6,8,5),ADCRIT(6,8,5),CVCRIT(6,8,5),
1 Y(5002),PCT,ALPHA
DOUBLE PRECISION DSEED

C
REAL PMU, PVAR

C
PMU = 0.0
PVAR = 1.0

C
CALL GGNLG(DSEED,N,PMU,PVAR,X)

C
*** ADD THE LOCATION PARAMETER OF 10 TO DEVIATES ***
C

DO 10 I=1,N
X(I) = X(I) + 10.0

10 CONTINUE
C

CALL VSRTA(X,N)
C

RETURN
C

END
C
*** END SUBROUTINE LOGDEV ***
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C

PURPOSE: TO ESTIMATE THE LOCATION AND THE SCALE PARAMETERS
* FROM THE SAMPLE DATA USING A BI-SECTION SEARCH.

* VARIABLES:
* X = ARRAY OF LOGNORMAL RANDOM DEVIATES

N = SAMPLE SIZE
AMLE = MLE OF THE LOCATION PARAMETER

* BMLE = MLE OF THE SCALE PARAMETER
* DIF = VARIABLE USED IN CALCULATIONS

TDIF = VARIABLE USED IN CALCULATIONS
* TEMP = VARIABLE USED IN CALCULATIONS
* UP = UPPER BOUND OF LOCATION PARAMETER
* UPPER = VALUE RETURNED BY CALC FOR UP
* LOW = LOWER OF STEPS IN BISECTION SEARCH
* LOWER = VALUE RETURNED BY CALC FOR LOW
* MID = VALUE OF MID-POINT BETWEEN UP AND LOW
* MIDDLE = VALUE RETURNED BY CALC FOR MID
* STEP = SIZE OF BACKWARD STEP = 10% OF X(1)
* THETA = VARIABLE USED IN CALCULATIONS
* STHETA = SUM OF ALL THETA
* HTHETA = LOGNORMAL OF THE ESTIMATE FOR THE SCALE PAR.

* SUBROUTINES:
* CALC - PERFORMS NECESSARY CALCULATIONS FOR MLE

C
SUBROUTINE MLE

C
COMMON DSEED,X,N,C,NC,AMLE,BMLE,P,PCT,

1 KS,AD,CVM,IT,NSIZ,NSHP,NPCT,NST,
1 KSCRIT,ADCRIT,CVCRIT,Y
INTEGER N,NSIZ,NSHP, IT,NPCT,NST
REAL X(31),AMLE,BMLE,KS(5000,6,7),AD(5000,6,7),

1 CVM(5000,6,7),C NC,P(30),
1 KSCRIT(6,8,5),ADCRIT(6,8,5),CVCRIT(6,8,5),
1 Y(5002),PCT,ALPHA
DOUBLE PRECISION DSEED

C
REAL LOW,LOWER,MID,MIDDLE,UP,UPPER,TEMP,STEP,THETA,
1 STHETA,HTHETA

C
DIF = 0.0
TDIF = 0.0

C
UP = X(1)

C
CALL CALC(UP,X,N,C,UPPER)

C
STEP = (.I*X(1))
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C
LOW = X(1)-STEP

C
5 CONTINUE

C
CALL CALC(LOW,X,N,C,LOWER)

C
IF ((UPPER*LOWER) .GT. 0.0) THEN

UP LOW
LOW = LOW-STEP
UPPER = LOWER
GO TO 5

END IF
C
10 CONTINUE

C
MID = (UP+LOW)/2

C
CALL CALC(MID,X,N,C,MIDDLE)

C
IF ((UPPER * MIDDLE) .LE. 0.0) THEN

LOW = MID
LOWER = MIDDLE

ELSE
UP = MID
UPPER = MIDDLE

END IF
C

IF (ABS(UP-LOW) .GT. .01) GO TO 10
C

AMLE = MID
C

STHETA = 0.0
C

DO 15 I=1,N
TEMP = LOG(X(I) - AMLE)
STHETA = STHETA + TEMP

15 CONTINUE
C

HTHETA = STHETA/N
BMLE = HTHETA

C
RETURN

C
END

C
END SUBROUTINE MLE ***

C
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* PURPOSE: TO PREFORM THE NECESSARY CALCULATIONS FOR THE MLE
* SEARCH.

* VARIABLES:
DSEED = RANDOM NUMBER SEED

* LOC = CURRENT LOCATION PARAMETER USED IN CALCULATIONS
* X = ARRAY OF LOGNORMAL RANDOM VARIABLES
* N = SAMPLE SIZE
* SHP = CURRENT SHAPE PARAMETER USED IN CALCULATIONS
* TSUM = VARIABLE USED IN CALCULATIONS

DIF = VARIABLE USED IN CALCULATIONS
* TDIF = VARIABLE USED IN CALCULATIONS
* SUM = VARIABLE USED IN CALCULATIONS
* LNDIF = VARIABLE USED IN CALCULATIONS

C
SUBROUTINE CALC(LOC,X,N, SHP, TSUM)

C
INTEGER N
REAL LOC,X(31),SHP,TSUM,DIF,SUM,TDIF,LNDIF

C
DOUBLE PRECISION DSEED

C
SUM = 0.0
TSUM = 0.0

C
DO 5 I=1,N

DIF = X(I)-LOC
IF (DIF .EQ. 0.0) DIF = .00001
LNDIF = LOG(DIF)
SUM = SUM + LNDIF

5 CONTINUE
C

SUM = SUM/N
C

DO 10 I=1,N
DIF = X(I) - LOC
IF (DIF .EQ. 0.0) DIF = .00001
TDIF = I/DIF
LNDIF = LOG(DIF)
TSUM = TSUM+TDIF+(1/SHP)*TDIF*(LNDIF-SUM)

10 CONTINUE
C

RETURN
C

END
C
*** END SUBROUTINE CALC ***
C
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*** **************** ******** ********** *** ***** ** ******* ****

* PURPOSE: GIVEN AN ORDERED SAMPLE OF SIZE N, A SPECIFIED
* SHAPE C, AND THE MLE OF THE LOCATION AND SCALE,
* COMPUTE THE HYPOTHESIZED LOGNORMAL DISTRIBUTION
* FUNCTION L(I) FOR I = 1,2,...N.

* VARIABLES:
* C = SHAPE PARAMETER
* X = ARRAY OF LOGNORMAL RANDOM DEVIATES
* N = SAMPLE SIZE
* AMLE = MLE OF THE LOCATION PARAMETER
* BMLE = MLE OF THE SCALE PARAMETER
* = ARRAY OF N POINTS OF HYPOTHESIZED CDF

*IMSL SUBROUTINE:
*MDNOR - CALCULATES THE NORMAL PDF OF AN OBSERVATION

C
SUBROUTINE HYPCDF

COMMON DSEED,X,N,C,NC,AMLE,BMLE,P,PCT,
1 KS,AD,CVM,IT,NSIZ,NSHP,NPCT,NST,
1 KSCRIT,ADCRIT,CVCRIT,Y

INTEGER N,NSIZ,NSHP, IT,NPCT,NST
REAL X(31),AMLE,BMLE,KS(5000,6,7),AD(5000,6,7),

1 CVM(5000,6,7),C,NC,P(30),
1 KSCRIT(6,8,5),ADCRIT(6,8,5),CVCRIT(6,8,5),
1 Y(5002),ALPHA,PCT
DOUBLE PRECISION DSEED

C
REAL Q,Z

C
DO 10 I 1,N

Q= (LOG(X(I)-AMLE)-BMLE)/C
CALL MDNOR(Q,Z)
P(I) = Z

10 CONTINUE
C

RETURN
C

END
C
*** END SOUROUTINE HYPCDF ***
C
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f*

* PURPOSE: GIVEN A SAMPLE SIZE N, AND THE HYPOTHESIZED
*LOGNORMAL DESTRIBUTION FUNCTION L(I), COMPUTE
* VALUES OF THE TEST STATISTICS OF THE MODIFIED K-S,

A-D, AND CVM GOODNESS-OF-FIT TESTS.

* VARIABLES:
* N = SAMPLE SIZE

NSHP = SHAPE PARAMETER COUNTER
* NSIZ = SAMPLE SIZE COUNTER
* IT = ITERATION COUNTER (1-5000)
* P = ARRAY OF N VALUES OF THE HYPOTHESIZED LOGNORMAL CDF
* DP = POSITIVE DIFFERENCES BETWEEN EDF AND CDF POINTS

DM = NEGATIVE DIFFERENCES BETWEEN EDF AND CDF POINTS
DPLUS = MAXIMUM POSITIVE DIFFERENCE (LARGEST DP VALUE)

* DMINUS = MAXIMUM NEGATIVE DIFFERENCE (LARGEST DM VALUE)

KS = VALUES OF THE MODIFIED K-S TEST STATISTIC
* AL = VALUE USED TO CALCULATE THE A-D TEST STATISTIC
* AM = VALUE USED TO CALCULATE THE A-D TEST STATISTIC

* AN = AL + AM
* AAA = VALUES TO BE SUMMED FOR A-D TEST STATISTIC
* SAAA = SUM OF AAA VALUES
* AD = VALUES OF THE MODIFIED A-D TEST STATISTIC

* ACV = SQUARED QUANTITIES IN THE C-VM FORMULA
* SACV = SUM OF THE ACV VALUES

CVM = VALUES OF THE MODIFIED C=VM TEST STATISTIC

C
SUBROUTINE TESTAT

COMMON DSEED,X,N,C,NC,AMLE,BMLE,P,PCT,
1 KS,AD,CVM,IT,NSIZ,NSHPNPCT,NST,
1 KSCRIT,ADCRIT,CVCRIT,Y
INTEGER N,NSIZ,NSHP,IT,IK,NPCT,NST
REAL X(31),AMLEBMLE,KS(5000,6,7),AD(5000,6,7),

1 CVM(5000,6,7),C,NC,P(30),
1 KSCRIT(6,8,5),ADCRIT(6,8,5),CVCRIT(6,8,5),
1 DP(30),DM(30),DPLUS,DMINUS,AL(30),AM(30),PCT,
1 AN(30),AAA(30),SAAA,ACV(30),SACV,Y(5002),ALPHA
DOUBLE PRECISION DSEED

C
DPLUS = 0
DMINUS = 0C
DO 5 IK = 1,30

DP(IK) = 0
DM(IK) = 0

5 CONTINUE
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COMPUTE THE K-S TEST STATISTIC**
C

DO 10 I1 1,N
DP(I) ABS( (I/REAL(N)) - P(I))
DM(I) =ABS( P(I) - (I-1)/REAL(N))

10 CONTINUE
C

DPLUS = MAX( DP(1) ,DP(2) ,DP(3) ,DP(4) ,DP(5) ,DP(6) ,DP(7),
1 DP(8) ,DP(9) ,DPC1O) ,DP(11) ,DP(12) ,DP(13) ,DP(14),
1 DP(15) ,DP(16) ,DP(17) ,DPC18) ,DP(19) ,DP(20),
1 DP(21) ,DP(22) ,DP(23) ,DP(24) ,DP(25) ,DP(26),
1 DP(27),DP(28),DP(29),DP(30))

C
DMINUS = MAX( DM(1),DM(2),DM(3),DM(4),DM(5),DM(6),DM(7),

1 DM(8) ,DM(9) ,DM(10) ,DM(11) ,DM(12) ,DM(13) ,DM(14),
1 DM(15) ,DM(16) ,DM(17) ,DM(18) ,DM(19) ,DM(20),
1 DM(21) ,DM(22) ,DM(23) ,DM(24) ,DM(25) ,DM(26),
1 DM(27),DM(28),DM(29),DM(30))

C
KS(IT,NSIZ,NSHP) = MAX(DPLUS,DMINUS)

C
COMPUTE THE A-D TEST STATISTIC

C
SAAA = 0

C
DO 20 J = 1,N

IF (P(J) .LE. .001) P(J) = .001
AL(J) = LOG (P(J))
IF (P(N+1-J) .LE. .001) P(N+1-J) =.001
AM(J = LOG (1.0 -P(N+1-J))

AN(J) = AL(J) + AM(J
AAA(J = (2.0*J - 1.0) * AN(J)
SAAA SAAA + AAA(J)

20 CONTINUE
C

AD(IT,NSIZ,NSHP) = -N - (1.0/REAL(N)) *SAAM
C

COMPUTE THE C-VM TEST STATISTIC **
C

SACV = 0
C

DO 30 K = 1,N
ACV(K) = ( P(K) - (2.0*K - 1.0)/(2.0*RE.AL(N)) )**2
SACV = SACV + ACV(K)

30 CONTINUE
C

CVM(IT,NSIZ,NSHP) = SACV + (1.0/(12.0*REAL(N)))
C

RETURN
C

END
C
*** END SUBROUTINE TESTAT**
C
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************* ******* ***** *** ** **************** ***********

* PURPOSE: CALCULATES THE CRITIAL VALUES FOR A GIVEN LEVEL OF
* SIGNIFICANCE
,
* VARIABLES:
* C = SHAPE PARAMETER
* N = SAMPLE SIZE
* NSHP = SHAPE PARAMETER COUNTER
* NSIZ = SAMPLE SIZE COUNTER
* NPCT = PERCENTILE COUNTER
* NST = TOTAL NUMBER OF STATISTICS USED
* IT = ITERATION COUNTER (5000 REQUIRED)
* KS = ARRAY OF VALUES OF MODIFIED K-S TEST STATISTIC
* CVM = ARRAY OF VALUES OF MODIFIED C-VM TEST STATISTIC
* AD = ARRAY OF VALUES OF MODIFIED A-D TEST STATISTIC
* ALPHA = LEVEL OF SIGNIFICANCE
*KS = -D ARRAY OF 5000 MODIFIED K-S TEST STATISTICS
* KS1 = I-D ARRAY OF 5000 K-S TEST STATISTICS
* =V1 3-D ARRAY OF 5000 MODIFIED C-VM TEST STATISTICS
* CV1 = 3-D ARRAY OF 5000 C-VM TEST STATISTICS
* AD = 3-D ARRAY OF 5000 MODIFIED A-D TEST STATISTICS
* AD1 = 3-D ARRAY OF 5000 A-D TEST STATISTICS

* STAT = 1-D ARRAY OF TEST STATS (KS, AD, OR CVM)
* KSCRIT = ARRAY OF CRITICAL VALUES FOR THE K-S TEST
* CVMCRIT = ARRAY OF CRITICAL VALUES FOR THE C-VM TEST
* ADCRIT = ARRAY OF CRITICAL VALUES FOR THE A-D TEST
* CRIT = EITHER THE KS, AD, OR CVM CRITICAL VALUE ARRAY
* Y = ARRAY CONTAINING 5002 PLOTTING POSITIONS
* SLPM = ARRAY OF SLOPES USED TO FIND CRITICAL VALUES
* BI = ARRAY OF INTERCEPTS USED TO FIND CRITICAL VALS.

* SUBROUTINE:
* VRSTA - ORDERS DATA IN ASCENDING VALUE

C
SUBROUTINE CRTVAL

C
COMMON DSEED,X,N,C,NC,AMLE,BMLE,P,PCT,

1 KS,AD,CVM,IT,NSIZ,NSHP,NPCT,NST,
1 KSCRIT,ADCRIT,CVCRIT,Y
INTEGER N,NSIZ,NSHP,IT,NPCT,NST,NTEST
REAL X(31),AMLE,BMLE,KS(5000,6,7),AD(5000,6,7),

1 CVM(5000,6,7),C,NC,P(30),
1 KSCRIT(6,8,5),ADCRIT(6,8,5),CVCRIT(6,8,5),PCT,
1 Y(5002),STAT(5002),CRIT(6,8,7),SLPM(7),BI(7),
1 KS1(5000),CV1(5000),AD1(5000),ALPHA
DOUBLE PRECISION DSEED

C
IF (NPCT .EQ. 1) PCT = .80
IF (NPCT .EQ. 2) PCT = .85
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IF (NPCT .EQ. 3) PCT =.90
IF (NPCT .EQ. 4) PCT = .95
IF (NPCT .EQ. 5) PCT = .99

C
*** STORE THE 3 SETS OF 5000 TEST STATS INTO 1-D ARRAYS: ***
C

DO 16 NCNT = 1,NST
KS1(NCNT) = KS(NCNT,NSIZ,NSHP)
AD1(NCNT) = AD(NCNT,NSIZ,NSHP)
CV1(NCNT) = CVM(NCNT,NSIZ,NSHP)

16 CONTINUE
C
*** USE IMSL SUBROUTINE TO ORDER THE TEST STATISTICS: ***
C

CALL VSRTA(KS1,NST)
C

CALL VSRTA(AD1,NST)
C

CALL VSRTA(CV1,NST)
C
*** BEGIN DO LOOP 20 TO ROTATE THROUGH KS, AD, CVM ***
C

DO 20 NTEST = 1,3
C

BEGIN DO LOOP 30 FOR 5000 DATA POINTS ***
C

DO 30 J = 1,NST
IF (NTEST .EQ. 1) THEN

STAT(J) = KS1(J)
ELSE IF (NTEST .EQ. 2) THEN

STAT(J) = AD1(J)
ELSE IF (NTEST .EQ. 3) THEN

STAT(J) = CV1(J)
END IF

30 CONTINUE
C

END DO LOOP 30 FOR 5000 DATA POINTS ***
C

EXTRAPOLATE LEFT ENDPOINT OF THE TEST STATISTICS: ***
C

IF (STAT(1) .EQ. STAT(2)) THEN
DIFO = STAT(3) - STAT(1)
IF (DIFO .EQ. 0.0) DIFO = .00001
SLPM(0) = (Y(3) - Y(1))/DIFO

ELSE
DIFO = STAT(2) - STAT(1)
SLPM(0) = (Y(2) - Y(1)) / DIFO

END IF
C

BI(0) = Y(1) - SLPM(0) * STAT(1)
STAT(0) = MAX(0.0, - BI(0)/SLPM(0) )

C
EXTRAPOLATE RIGHT ENDPOINT OF THE TEST STATISTIC ***
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C
IF (STAT(NST-1) -EQ. STAT(NST)) THEN

DIF6 =STAT(NST) - STAT(NST-2)
IF (DIF6 .EQ.0.0) DIF6 = .00001
SLPM(6) = (Y(NST)-Y(NST-2)) / DIF6

hr ELSE
DIF6 =STAT(NST) - STAT(NST-1)
SLPM(6) = (Y(NST)-Y(NST-1)) / DIF6

END IF
C

BI(6) = Y(NST-1) - SLPM(6)*STAT(NST-1)
STAT(NST+1) = (1.0 - BIM6) / SLPM(6)

C
INTERPOLATE CRITICAL VALUES BETWEEN TEST STATS: *

C
BEGIN DO LOOP 50 TO FIND MAX Y(K) < POT:

C
DO 50 KJ = 1,NST

K =NST+l - KJ
C

IF (Y(K) .LE. POT) THEN
C

IF (STAT(K) .EQ. STAT(K+1)) THEN
DIF = STAT(K+l) - STAT(K-1)
IF (DIF .EQ.0.0) DIF = .00001
SLPM(NPCT) = (Y(K+1)-Y(K-1)) IDIF

ELSE
DIF = STAT(K+l) - STAT(K
SLPM(NPCT) = (Y(K+1)-Y(K)) /DIF

END IF
C

BI(NPCT) = Y(K) - SLP M(NPCT) *STAT(K)
CRIT(NSIZ, NSHP, NPCT)

1 =(PCT-BI(NPCT))/SLPM(NPCT)
C

GO TO 75
END IF

C
50 CONTINUE

C
END DO LOOP 50 UPON FINDING CRIT VAL **

C
ASSOCIATE THE CRITICAL VALUES WITH TEST TYPES **

C
75 IF (NTEST .EQ. 1) THEN

KSCRIT(NSIZ,NSHP,NPCT) = CRIT(NSIZ,NSHP,NPCT)
ELSE IF (NTEST .EQ. 2) THEN

ADCRIT(NSIZ,NSHP,NPCT) = CRIT(NSIZ,NSHP,NPCT)
ELSE IF (NTEST .EQ.3) THEN

CVCRIT(NSIZ,NSHP,NPCT) = CRIT(NSIZNSHP,NPCT)
END IF

C
20 CONTINUE
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C
*** END DO LOOP 20 AFTER ROTATING THROUGH KS, AD, AND CVM ***
C

RETURN
C

END
C

END SUBROUTINE CRTVALL *
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APPENDIX B

Flow Chart for Program Power

Computer Program and Subroutines
for Determining Power

Values



Subroutine STEP 1
LOGDEV Generate n Random

Lognormal and Alternate
Distributions

STEP 2
LOGDEV Order Random

Deviates

MLE STEPS 3,4, and 5
CALC Estimate Parameters
HYPCDF Determine Distribution

Function and Calculate
TESTAT Test Statistics

STEP 6

Campare Test Statistics
COMPAR Against Critical Values;

Count times Ho rejected

MAIN
Do loop 40 Repeat 5000

Fig 2. Flow chart for Program POWER

P-I.. ... .



STEP 8
MAIN Divide Number of Ho

Rejects by 5000 to
Determine the Power

of the test

MAIN Repeat for
Do loop 60 Distribu

STEP 10

MAIN Repeat fr
Do loop 7 n = 5,15,2

STEP 1
MAIN Repeat for
Do loop 80 .05 & .0

STEP 1

MAIN peat for
Do loop 90 s e =1

Fig 2 (Continued). Flow Chart for Program POWER

B-2



* PROGRAM POWER *
******** ********* ** **************** **************** *** *

* PURPOSE: TO TEST THE NULL HYPOTHESIS THAT A SET OF SAMPLE
* DATA FOLLOWS THE LOGNORMAL DISTRIBUTION WITH
* SHAPE C AGAINST THE ALTERNATE HYPOTHESIS THAT
* THE DATA FOLLOWS SOME OTHER DISTRIBUTION.

* VARIABLES:
* DSEED = RANDOM NUMBER SEED
* X = RANDOM LOGNORMAL DEVIATES
* N = SAMPLE SIZE
* C = SHAPE PARAMETER
* NC = SAMPLE SIZE * SHAPE
* AMLE = MLE OF LOCATION PARAMETER
* BMLE = MLE OF SCALE PARAMETER
* P = ARRAY OF N POINTS FROM HYPOTHSIZED CDF
* KS = ARRAY OF VALUES OF MOD. K-S TEST STATISTICS
* AD = ARRAY OF VALUES OF MOD. A-D TEST STATISTICS
* CVM = ARRAY OF VALUES OF MOD. C-VM TEST STATISTICS
* X2 = ARRAY OF VALUES OF CHI-SQUARE TEST STATISTICS
* IT = ITERATION COUNTER (5000 USED)
* NSIZ = SAMPLE SIZE COUNTER (1=5,2=15,3=25)
* NSHP = NULL-HYPOTHESIS LOGNORMAL SHAPE COUNTER (1=1,2=3)
* NREP = NUMBER OF REPETITIONS TO BE USED
* NALT = ALTERNATIVE DISTRIBUTION COUNTER
* NALF = SIGNIFICANT LEVEL COUNTER (1=.05,1=.O1)
* NRKS = NUMBER OF HYPOTHESIS REJECTS UNDER THE K-S TEST
* NRAD = NUMBER OF HYPOTHESIS REJECTS UNDER THE A-D TEST
* NRCV = NUMBER OF HYPOTHESIS REJECTS UNDER THE C-VM TEST
* NRX2 = NUMBER OF HYPOTHESIS REJECTS UNDER THE CHI-2 TEST

* SUBROUTINES:
* LOGDEV - GENERATES N RANDOM LOGNORMAL DEVIATES
* MLE - ESTIMATES THE LOCATION AND SCALE PARAMETERS
* CALC - PREFORMS THE CALCULATIONS FOR THE BI-SECTION
* SEARCH USED IN MLE
* HYPCDF - COMPUTES THE HYPOTHESIZED CDF
* TESTAT - CALCULATES THE K-S, A-D, AND C-VM TEST STATISTICS
* COMPAR - COMPARES TEST STATISTICS WITH CRITICAL VALUES AND
* COUNTS REJECTS

* IMSL SUBROUTINES:
* GGNLG - GENERATES LOGNORMAL DEVIATES
* GGWIB - GENERATES WEIBULL DEVIATES
* GGAMR - GENERATES GAMMA DEVIATES
* GGBTR - GENERATES BETA DEVIATES
* GGEXN - GENERATES EXPONENTIAL DEVIATES
* GGNML - GENERATES NORMAL DEVIATES
* VSRTA - ORDERS DATA IN ASCENDING ORDER
* MDNOR - CALCULATES NORMAL PDF OF VALUE
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* ** NOTE **
IT IS IMPORTANT TO LINK TO IMSL LIBRARY BEFORE RUNNING THIS

, PROGRAM

C
PROGRAM POWER

C
COMMON DSEED,X,N,C,NC,AMLE,BMLE,P,
1 KS,AD,CVM,IT,NSIZ,NSHP,NREP,
1 NALT,NALF,NRKS,NRAD,NRCV,NRX2,X2
INTEGER N,NSIZ,NSHP, IT,NREP,NRKS(2,2,3,8),NRAD(2,2,3,8),

1 NRCV(2,2,3,8),NRX2(2,2,3,8)
REAL X(26),AMLE,BMLE,KS(2,2,3,8),AD(2,2,3,8),
1 CVM(2,2,3,8),C,NC,
1 P(25),ALPHA,KSPWR(2,2,3,8),ADPWR(2,2,3,8),
1 CVPWR(2,2,3,8),X2CRIT(2,2,3),X2(2,2,3,8),
1 X2PWR(2,2,3,8)

C
CHARACTER TEST(4)*3,ALTCDF(8)*12
DOUBLE PRECISION DSEED

C
CALL FILL

C
TEST(l) = 'K-S'
TEST(2) = 'A-D'
TEST(3) = 'CVM'
TEST(4) = 'CHI'

C
ALTCDF(1) = 'LOGNORMAL C=1.0'
ALTCDF(2) = 'LOGNORMAL C=3.0'
ALTCDF(3) = 'LOGNORMAL C=2.0'
ALTCDF(4) = 'WEIBULL'
ALTCDF(5) = 'GAMMA'
ALTCDF(6) = 'BETA'
ALTCDF(7) = 'EXPONENTIAL'
ALTCDF(8) = 'NORMAL'

C
*** OPEN OUTPUT FILE TO STORE COMPUTED POWER VALUES: ***
C

OPEN (UNIT=7,FILE='POWER',STATUS='NEW')
C
*** NUMBER OF REPETITIONS TO BE USED ON EACH RUN: ***

C PRINT*,'THE MONTE CARLO POWER ANALYSIS WILL REQUIRE'
C PRINT*,' 5000 REPETITIONS.'
C PRINT*,'ENTER THE NUMBER TO BE USED FOR THIS RUN:'
C READ*,NREP
C

NREP = 5000
C
C PRINT*,'ENTER RANDOM NUMBER SEED OR "l." FOR DEFAULT:'

B-4



o READ*,DSEED
C IF (DSEED .EQ. 1.) DSEED =123457.ODO
C PRINT*, :o PRINT*, 'STANDBY . .. COMPUTATIONS IN PROGRESS'

C

DO 90 NSHP = 1,2
IF (NSHP .EQ. 1) THEN

C =1.0
WRITE(7,51)
WRITE(7, 56)
WRITE(7, 58)
WRITE(7,62)

ELSE IF (NSHP .EQ. 2) THEN
C =3.0
WRITE(7, 52)
WRITE(7, 56)
WRITE(7, 59)
WRITE(7,62)

END IF
C

DO 80 HALF =1,2
C

IF (NALF .EQ. 1) THEN
ALPHA = .05
WRITE(7,64)

ELSE IF (HALF .EQ. 2) THEN
ALPHA = .01
WRITE(7,66)

END IF
C

WRITE(7,54)
WRITE(7, 74)
WRITE(7, 68)
WRITE(7,72)
WRITE(7, 76)
WRITE(7,72)

C
NSIZ =0

DO 70 N = 5,25,10

NSIZ = NSIZ + 1
NC = N*C

DO 60 NALT = 1,8

NRKS(NSHP,NALF,NSIZ,NALT) =0
NRAD(NSHP,NALF,NSIZ,NALT) = 0
NRCV(NSHP,NALIF,NSIZ,NALT) =0
NRX2(NSHP,NALF,NSIZ,NALT) = 0
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DO 40 IT = 1,NREP
C

IF (HALT .EQ. 1) CALL LOGDEV
IF (HALT .EQ. 2) CALL LOGDEV
IF (HALT .EQ. 3) CALL LOGDEV
IF (NALT .EQ. 4) CALL GGWIB(DSEED,3.5,N,X)
IF (HALT .EQ. 5)

1CALL GGAMR(DSEED,2.,N,1,X)
IF (HALT .EQ. 6)

1CALL GGBTR(DSEED,2.,3.,N,X)
IF (HALT .EQ. 7) CALL GGEXN(DSEED,2.,N,X)
IF (NALT .EQ. 8) CALL GGNML(DSEED,H,X)

C
CALL VSRTA(X,N)

C
CALL MLE

C
CALL HYPCDF

C
CALL TESTAT

C
CALL COXPAR

C
40 CONTINUE

C
KSPWR(NSHP, HALF, NSIZ ,HALT)

1 =NRKS(NSHP,NALF,NSIZ,HALT)/REAL(HREP)
ADPWR(HSHP,NALF,NSIZ, NALT)

1 = RAD(NSHP,HALF,HSIZ,NALT)/REAL(NREP)
CVPWR(NSHP,NALF,HSIZ,NAT

1 = RCV(NSHP,NALF,NSIZ,NALT)/REAL(NREP)
X2PWR(NSHP, HALF, HSIZ,NALT)

1 NRX2(NSHP,HALF,NSIZ,NALT)/REAL(NREP)
C
60 CONTINUE

C
WRITE POWER RESULTS TO FILE *

C
WRITE(7,11O),N,TEST(1),KSPWR(NSHP,NALF,NSIZ.1),

1 KSPWR(NSHP,NALF,NSIZ,2),KSPWR(NSHPPNALF,NSIZ,3),
1 KSPWR(NSHP,NALF,NSIZ,4),KSPWR(NSHP,NALF,NSIZ,5),
1 KSPWR(HSHP,HALF,NSIZ,6),KSPWR(NSHP,NALF.NSIZ,7).
1 KSPWR(HSHP,NALF,HSIZ,8)

WRITE(7,110),H,TEST(2),ADPWR(NSHP,NALF,NSIZ,1),
1 ADFWR(NSHP,NALF,NSIZ,2),ADPWR(NSHP,NALF,NSIZ,3).
1 ADFWR(HSHP,NAELF,NSIZ,4),ADPWR(NSHP,NALF,NSIZ,5),
1 ADPWR(HSHP,HALF,NSIZ,6),ADPWR(HSHPPNALF,NSIZ,7),
1 ADFWR(NSHP,NALF,NSIZ,B)

C
WRITE(7,110),N,TEST(3),CVPWR(NSHP,NALF,NSIZ,1),

1 CVPWR(NHEP,NALF,NSIZ,2),CVPWR(NSHP,NALF,NSIZ,3),
1 CVFWR(NSHF,NALF,HSIZ,4),CVPWR(NSHP,NALF,NSIZ,5),
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1 CVPWR(NSHP,NALF,NSIZ,6),CVPWR(NSHP,NALF,NSIZ,7),
1 CVPWR(NSHP,NALF,NSIZ,8)

C
WRITE(7, 110) ,N,TEST(4) ,X2PWR(NSHP,NALF,NSIZ, 1),

1 X2PWR(NSHP,NALF,NSIZ,2),X2PWR(NSHP,NALF,NSIZ,3),
1 X2PWR(NSHP,NALF,NSIZ,4),X2PWR(NSHP,NALF,NSIZ,5),
1 X2PWR(NSHP,NALF,NSIZ,6),X2PWR(NSHP,NALF,NSIZ,7),
1 X2PWR(NSHP,NALF,NSIZ,8)

C
WRITE(7, 72)

C
70 CONTINUE

C
80 CONJYENUE

C
WRITE(7,74)

C
90 CONTINUE

C
51 FORMAT('1',36X,'TABLE IV')
52 FORMAT('1.',35X,'TABLE V')
54 FORMAT(' ')
56 FORMAT('0',22X,'POWER TEST FOR THE LOGNORMAL '

I 'DISTRIBUTION')
58 FORMAT(22X,'HO: LOGNORMAL DISTRIBUTION AT SHAPE C =1.0')
59 FORMAT(22X,'HO: LOGNORMAL DISTRIBUTION AT SHAPE C =3.0')
62 FORMAT(22X,'HA: THE DATA FOLLOW ANOTHER DISTRIBUTION')
64 FORMAT('0',28X,'LEVEL OF SIGNIFICANCE = .05')
66 FORMAT('0',28X,'LEVEL OF SIGNIFICANCE = .01')
68 FORMAT(35X, 'ALTERNATE DISTRIBUTIONS')
72 FORMAT(80('-'))
74 FORMAT(80('='))
76 FORMAT(2X, ' N' ,3X, 'TEST' ,4X, 'PAR.1' ,3X, 'PAR.2' ,3X,

1 'PAR.3',3X,'WEIBL',3X,'GAMM4A',3X,'BETA',4X,
1 'EXPON',3X,'NORIL')

C
110 FORMAT(' ',13,A7,F9.3,7F8.3)

C
CLOSE(7)

C
END

C
END MAIN PROGRAM **

C
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* PURPOSE: TO FILL ALL ARRAYS USED IN THIS PROGRAM WITH THE
* VALUE OF 0

* VARIABLES:
* X = ARRAY OF RANDOM LOGNORMAL DEVIATES
* P= ARRAY OF N POINTS FROM HYPOTHSIZED CDF
* KS = ARRAY OF VALUES OF MODIFIED K-S TEST STATISTICS
* AD = ARRAY OF VALUES OF MODIFIED A-D TEST STATISTICS
* CVM = ARRAY OF VALUES OF MODIFIED C-VM TEST STATISTICS
* X2 = ARRAY OF VALUES OF CHI-SQUARE TEST STATISTICS
* NRKS = ARRAY OF REJECTION OF THE K-S TEST
* NRAD = ARRAY OF REJECTION OF THE A-D TEST
* NRCV = ARRAY OF REJECTION OF THE C-VM TEST
* NRX2 = ARRAY OF REJECTION OF THE CHI-SQUARE TEST
* KSPWR = ARRAY OF POWERS OF THE MODIFIED K-S TEST
* ADPWR = ARRAY OF POWERS OF THE MODIFIED A-D TEST
* CVPWR = ARRAY OF POWERS OF THE MODIFIED C-VM TEST
* X2PWR = ARRAY OF POWERS OF THE CHI-SQUARE TEST
* X2CRIT = ARRAY OF CRITICAL VALUES FOR CHI-SQUARE TEST

C
SUBROUTINE FILL

C
COMMON DSEED,X,N,C,NC,AMLE,BMLE,P,
1 KS,AD,CVM,IT,NSIZ,NSHP,NREP,
1 NALT,NALF,NRKS,NRAD,NRCV,NRX2,X2
INTEGER N,NSIZ,NSHP,IT,NREP,NRKS(2,2,3,8),NRAD(2,2,3,8),
1 NRCV(2,2,3,8),NRX2(2,2,3,8)
REAL X(26),AMLE,BMLE,KS(2,2,3,8),AD(2,2,3,8),
1 CVM(2,2,3,8),C,NC,
1 P(25),ALPHA,KSPWR(2,2,3,8),ADPWR(2,2,3,8),
1 CVPWR(2,2,3,8),X2CRIT(2,2,3),X2(2,2,3,8),
1 X2PWR(2,2,3,8)

C
DOUBLE PRECISION DSEED

C
DO 10 I=1,25

C
X(I) = 0.0
P(I) = 0.0

C
10 CONTINUE

C
DO 20 I=1,2

C
DO 30 J=1,2

C
DO 40 K=1,3

C
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DO 50 L=1, 8
NRKS(I,J,K,L)=O
NRAD(I,J,K,L)0O
NRCV(I,JK,L)=O
NRX2(I,J,K,L)=O
KS(I,J,K,L)=0.0
AD(I,J,K,L)=0.0
CVM(I,J,K,L)=O.0
X2(I,J,K,L)=0.0
KSPWR(I,J,K,L)=O.01. ADPWR(I,J,K,L)=0.0
X2PWR(I,J,K,L)=0.0

C
50 CONTINUE

C
X2CRIT(I,JK)=O.0

C
40 CONTINUE

C
30 CONTINUE

C
20 CONTINUE

C
RETURN
END

C
*** END SUBROUTINE FILL
C
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J*

* PURPOSE: TO GENERATE N RANDOM DEVIATES FROM A LOGNORMAL
* DISTRIBUTION WHOSE PARENT NORMAL HAS A MEAN
* OF 0 AND A STANDARD DEVIATION OF 1, THE SUBROUTINE
* THEN ADDS THE LOCATION OF 10 TO EACH OF THE
* DEVIATES. VRSTA THEN ORDERS THE SAMPLE DATA.

* VARIABLES:
* DSEED = RANDOM NUMBER SEED
* X = RANDOM LOGNORMAL DEVIATES
* N = SAMPLE SIZE
* PMU = MEAN OF PARENT NORMAL OF LOGNORMAL
* PVAR = VARIANCE OF PARENT NORMAL OF LOGNORMAL

* IMSL SUBROUTINES:
* GGNLG - GENERATES LOGNORMAL RANDOM DEVIATES
* VSRTA - ORDERS DATA IN ACENDING ORDER

C
SUBROUTINE LOGDEV

C
COMMON DSEED,X,N,C,NC,AMLE,BMLE,P,
1 KS,AD,CVM,IT,NSIZ,NSHP,NREP,
1 NALTNALF,NRKS,NRAD,NRCV,NRX2,X2
INTEGER N,NSIZ, IT,NREP,NRKS(2,2,3,8),NRAD(2,2,3,8),
1 NRCV(2,2,3,8) ,NRX2(2,2,3,8)
REAL X(26),AMLE,BMLE,KS(2,2,3,8),AD(2,2,3,8),
1 CVM(2,2,3,8),CNC,
1 P(25),ALPHA,KSPWR(2,2,3,8) ,ADPWR(2,2,3,8),
1 CVPWR(2,2,3,8) ,X2CRIT(2,2,3),X2(2,2,3,8),
1 X2PWR(2,2,3,8),AC
DOUBLE PRECISION DSEED

C
PMU = 0.0
PVAR = 1.0

C
CALL GGNLG(DSEED,N,PMU,PVAR,X)

C
DO 10 I=I,N

X(I) = X(I) + 10.0
10 CONTINUE

C
CALL VSRTA(X,N)

C
RETURN

C
END

C
*** END SUBROUTINE LOGDEV ***
C
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* PURPOSE: TO ESTIMATE THE MAXIMUM LIKELIHOOD ESTIMATORS OF
*THE LOCATION AND THE SCALE PARAMETERS - GIVEN A
*KNOWN SHAPE PARAMETER, C.

VARIABLES:
* X = RANDOM LOGNORMAL DEVIATES
* N = SAMPLE SIZE
* C = SHAPE PARAMETER
* AMLE = MAXIMUM LIKELIHOOD ESTIMATOR OF LOCATION PARAMETER
* BMLE = MAXIMUM LIKELIHOOD ESTIMATOR OF SCALE PARAMETER
* DIF = VARIABLE USED IN CALCULATIONS
* TDIF = VARIABLE USED IN CALCULATIONS
* TEMP = VARIABLE USED IN CALCULATIONS
* UP = UPPER BOUND OF LOCATION PARAMETER

UPPER = VALUE RETURNED BY CALC FOR UP
* LOW = LOWER OF STEPS IN BISECTION SEARCH
* LOWER = VALUE RETURNED BY CALC FOR LOW
* MID = VALUE OF THE MID-POINT BETWEEN LOW AND UP
* MIDDLE = VALUE RETURNED BY CALC FOR MID
* STEP = SIZE OF BACKWARD STEP = 10% OF X(1)

THETA = VARIABLE USED IN CALCULATIONS
* STHETA = SUM OF ALL THETA
* HTHETA = LOGNORMAL OF THE ESTIMATE FOR THE SCALE PARAMETER

* SUBROUTINES:
* CALC - PERFORMS CALCULATIONS FOR THE BISECTION SEARCH

C
SUBROUTINE MLE

C
COMMON DSEED,X,N,C,NC,AMLE,BMLE,P,
1 KS,AD,CVM,IT,NSIZ,NSHP,NREP,
1 NALT,NALF,NRKS,NRAD,NRCV,NRX2,X2
INTEGER N,NSIZ,NSHP, IT,NREP,NRKS(2,2,3,8) ,NRAD(2,2,3,8),
1 NRCV(2,2,3,8) ,NRX2(2,2,3,8)
REAL X(26) ,AMLEBMLE,KS(2,2,3,8) ,AD(2,2,3,8),
1 CVM(2,2,3,8),C,NC,
1 P(25),ALPHA,KSPWR(2,2,3,8),ADPWR(2,2,3,8),
1 CVPWR(2,2,3,8) ,X2CRIT(2,2,3) ,X2(2,2,3,8),
1 X2PWR(2,2,3,8)
DOUBLE PRECISION DSEED

C
REAL LOW,LOWER,MID,MIDDLEUP,UPPER,STEP,THETA,STHETA,
1 HTHETA

C
UP = X(1)

C
CALL CAIC(UP,X,N.C,UPPER)

C
STEP = (ABS(.l*X(1)))
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C
LOW = X(1) - STEP

C
5 CONTINUE

C
CALL CALC(LOW,X,N,C,LOWER)

C
IF ((UPPER*LOWER) .GT. 0.0) THEN

UP = LOW
LOW : LOW - STEP
UPPER = LOWER
GO TO 5

END IF
C
10 CONTINUE

C
MID = (UP + LOW)/2

C
CALL CALC(MID,X,N,C,MIDDLE)

C
IF ((UPPER*MIDDLE) .LE. 0.0) THEN

LOW = MID
LOWER = MIDDLE

ELSE
UP = MID
UPPER = MIDDLE

END IF
C

-' (ABS(UP-LOW) .GT. .01) THEN
GO TO 10

END IF
C

AMLE = MID
C

STHETA = 0.0
C

DO 15 I=1,N
TEMP = LOG(X(I) - AMLE)
STHETA = STHETA + TEMP

15 CONTINUE
C

HTHETA = STHETA/N
BMLE = HTHETA

C
RETURN

C
END

C
** END SUBROUTINE MLE *
C
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* PURPOSE: PERFORM THE CALCULATION NEEDED TO TRANSFORM THE
* ESTIMATED LOGNORMAL PARAMETERS TO THE PARENT
* PARAMETER.

* VARIABLES:
* X = RANDOM LOGNORMAL DEVIATES
* N = SAMPLE SIZE
* SHP = SHAPE PARAMETER
* LOC = CURRENT LOCATION PARAMETER USED IN CALCULATIONS
* TSUM = VARIABLE USED IN CALCULATIONS
* DIF = VARIABLE USED IN CALCULATIONS
* TDIF = VARIABLE USED IN CALCULATIONS
* SUM = VARIABLE USED IN CALCULATIONS
* LNDIF = VARIABLE USED IN CALCULATIONS

C
SUBROUTINE CALC(LOC,X,N, SHP, TSUM)

C
INTEGER N
REAL LOC,X(31),SHP,TSUM,DIF,LNDIF,TDIF,SUM

C
SUM = 0.0
TSUM 0.0

C
DO 5 I = ,N

DIF = X(I) - LOC
IF (DIF .EQ. 0.0) DIF = .0001
LNDIF = LOG(DIF)
SUM = SUM+LNDIF

5 CONTINUE
C

SUM = SUM/N
C

DO 10 I =1,N
DIF = X(I) - LOC
IF (DIF .EQ. 0.0) DIF = .0001
LNDIF = LOG(DIF)
TDIF 1/DIF
TSUM TSUM+TDIF+(1/SBP)*TDIF*(LNDIF-SUM)

10 CONTINUE
C

RETURN
C

END
C
*** END SUBROUTINE CALC ***
C
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*I

* PURPOSE: TO COMPUTE THE HYPOTHESIZED LOGNORMAL DISTRIBUTION
* FUNCTION P(I) FOR I = 1,2,...,N - GIVEN A KNOWN
, SHAPE PARAMETER AND THE ESTIMATED VALUES FOR THE
* LOCATION AND SCALE PARAMETER.

* VARIABLES:
* X = RANDOM LOGNORMAL DEVIATES
* N = SAMPLE SIZE
* C = SHAPE PARAMETER
* AMLE = MAXIMUM LIKELIHOOD ESTIMATOR OF LOCATION PARAMETER
* BMLE = MAXIMUM LIKELIHOOD ESTIMATOR OF SCALE PARAMETER
* P = ARRAY OF N POINTS OF THE HYPOTHESIZED CDF

* IMSL SUBROUTINES:
* MDNOR - CALCULATES THE NORMAL PDF OF OBSERVATION

SUBROUTINE HYPCDF
C

COMMON DSEED,X,N,C,NC,AMLE,BMLE,P,
1 KS,AD,CVM,IT,NSIZ,NSHP,NREP,
1 NALT,NALF,NRKS,NRAD,NRCV,NRX2,X2
INTEGER N,NSIZ,NSHP, IT,NREP,NRKS(2,2,3,8) ,NRAD(2,2,3,8),

1 NRCV(2,2,3,8) ,NRX2(2,2,3,8)
REAL X(26) ,AMLE,BMLE,KS(2,2,3,8) ,AD(2,2,3,8),
1 CVM(2,2,3,8),C,NC,
1 P(25),ALPHA,KSPWR(2,2,3,8),ADPWR(2,2,3,8),
1 CVPWR(2,2,3,8),X2CRIT(2,2,3) ,X2(2,2,3,8),
1 X2PWR(2,2,3,8)
DOUBLE PRECISION DSEED

C
REAL Q,Z

C
DO 10 I 1,N

Q = (LOG(X(I)-AMLE) - BMLE)/C
CALL MDNOR(Q,Z)
P(I) = Z

10 CONTINUE
C

RETURN
C

END
C
*** END SUBROUTINE HYPCDF
C
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* PURPOSE: COMPUTE VALUES OF THE TEST STATISTICS OF THE
* CHI-SQUARE AND THE MODIFIED K-S, A-D, C-VM
* GOODNESS-OF-FIT TESTS.

* VARIABLES:
* X = RANDOM LOGNORMAL DEVIATES
* N = SAMPLE SIZE
* C = SHAPE PARAMETER
* AMLE = MAXIMUM LIKELIHOOD ESTIMATOR OF LOCATION PARAMETER
* BMLE = MAXIMUM LIKELIHOOD ESTIMATOR OF SCALE PARAMETER
* P = ARRAY OF N POINTS FROM HYPOTHSIZED CDF
* KS = ARRAY OF VALUES OF MODIFIED K-S TEST STATISTICS
* AD = ARRAY OF VALUES OF MODIFIED A-D TEST STATISTICS
* CVM = ARRAY OF VALUES OF MODIFIED C-VM TEST STATISTICS
* X2 = ARRAY OF VALUES OF CHI-SQUARE TEST STATISTICS
* IT = ITERATION COUNTER (5000 USED)
* NSIZ = SAMPLE SIZE COUNTER (1=5,2=15,3=25)
* NSHP = NULL-HYPOTHESIS LOGNORMAL SHAPE COUNTER (1=1,2=3)
* NREP = NUMBER OF REPETITIONS TO BE USED
* NALT = ALTERNATIVE DISTRIBUTION COUNTER
* NALF = SIGNIFICANT LEVEL COUNTER (1=.05,1=.01)
* DP POSITIVE DIFFERENCES BETWEEN EDF AND CDF POINTS
* DM = NEGATIVE DIFFERENCES BETWEEN EDF AND CDF POINTS
* DPLUS = MAXIMUM POSITIVE DIFFERENCE (LARGEST DP VALUE)
* DMINUS = MAXIMUM NEGATIVE DIFFERENCE (LARGEST DM VALUE)

* KS = VALUES OF THE MODIFIED K-S TEST STATISTIC
* AL VALUE USED TO CALCULATE THE A-D TEST STATISTIC
* AM = VALUE USED TO CALCULATE THE A-D TEST STATISTIC

* AN = AL + AM
* AAA = VALUES TO TO BE SUMMED FOR A-D TEST STATISTIC
* SAAA = SUM OF AAA VALUE
* AD = VALUES OF THE MODIFIED A-D TEST STATISTIC

* ACV = SQUARED QUANTITIES IN THE C-VM FORMULA
* SACV = SUM OF ACV VALUES
* CVM = VALUES OF THE MODIFIED C-VM TEST STATISTIC

C
SUBROUTINE TESTAT

C
COMMON DSEED,X,N,C,NC,AMLE,BMLE,P,

1 KS,AD,CVM,IT,NSIZ,NSHP,NREP,
1 NALT,NALF,NRKS,NRAD.NRCV,NRX2,X2
INTEGER N,NSIZ,NSHP,IT,NREP,NRKS(2,2,3,8),NRAD(2,2,3,8),
1 NRCV(2,2,3,8) ,OBS(5),NRX2(2,2,3,8)
REAL X(26) ,AMLE,BMLE,KS(2,2,3,8) ,AD(2,2,3,8),

1 CVM(2,2,3,8),C,NC,
1 P(25) ,ALPHA,KSPWR(2,2,3,8) ,ADPWR(2,2,3,8),
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1 CVPWR(2,238) ,X2CRIT(2,2,3) ,X2(2,2,3,8),
1 EX,DP(25),DM(25),DPLUS,DMINUS,AL(25),
1 X2PWR(2,2, 3,8) ,AM(25) ,AN(25) ,AAA(25) ISAAA,
1 ACV(25),SACV,RTEND(4)
DOUBLE PRECISION DSEED

C
DPLUS =0
DMINUS = 0
DO 5 1K = 1,25

DP(IK) = 0
DM(IK) = 0

5 CONTINUE

DO 10 1 =1,N

DP(I) =ABS((I/REAL(N)) - P(I))
DM(I) =ABS(P(I) - (I-1)/REAL(N))

10 CONTINUE
C

DPLUS = MAX( DP(1) ,DP(2) ,DP(3) ,DP(4) ,DP(5) ,DP(6) ,DP(7),
1 DP(8) ,DP(9) ,DP(10) ,DP(11) ,DP(12) ,DP(13) ,DP(14),
1 DP(15) ,DP(16) ,DP(17) ,DP(18) ,DP(19) ,DP(20),
1 DP(21) ,DP(22) ,DP(23) ,DP(24) ,DP(25))

C
DMINUS = MAX( DI(l) ,DM(2) ,DM~(3) ,DM(4) ,DM(5) ,DM(6) ,DM(7),
1 DM(8) ,DM(9) ,DM(1O) ,DM(11) ,DM(12) ,DM(13) ,DM(14),
1 DM(15) ,DM(16) ,DM(17) ,DM(18) ,DM(19) ,DM(20),
1 DM(21),DM(22),DM(23),DM(24),DM(25))

C
KS(NSHP,t4ALF, NSIZ ,NALT) = MAX(DPLUS, DMINUS)

SAAA =0

DO 20 J= 1,N
IF (P(J) .LE. .001) P(J) = .001
AL(J = LOG (P(J))
IF (P(N+1-J) .LE. .001) P(N+1-J) .001
Ak4(J= LOG (1.0 - P(N+1-J))
AN(J) = AL(J) + AM(J)
AAA(J) =(2.0*J - 1.0) *AN(J)
SAMA = SAMA + AAA(J)

20 CONTINUE
C

AD(NSHP,NALF,NSIZ,NALT) = -N -(1.0/REAL(N)) *SAAA
C

SACV = 0
C

DO 30 K=1,
ACV(K) = (P(K) - (2.0*K -1.0)/(2.0*REAL(N)))**2

SACV = SACV + ACV(K)
30 CONTINUE
C

CVM(k4SHP,NALF,NSIZ,NALT) = SACY + (1.0/( 12.0*REAL(N)))
C

B-16



DO 40 IN = 1,5
OBS(IN) =0

40 CONTINUE
C

DO 50 KI =1,4
RTEND(KI) = AHLE-BMLE + BMLE*(1.O-. 2*KI)**(-1.0/C)

50 CONTINUE
C

DO 60 M = 1,N
C

IF (X(M) .LE. RTEND(1) ) THEN
OBS(1) = OBS(l) + 1

ELSE IF (X(M) .LE. RTEND (2)) THEN
OBS(2) =OBS(2) +1

ELSE IF (X(M).LE.RTEND(3)) THEN
OBS(3) = OBS(3) + 1

ELSE IF (X(N) .LE. RTEND(4)) THEN
OBS(4) = OBS(4 + 1

ELSE
OBS(5) = OBS(5) + 1

END IF

60 CONTINUE
C

EX =N/5.0

X2(NSHP,NALF,NSIZ,NALT) ((OBS(l)-EX) **2)/ EX
1 + ((OBS(2)-EX)**2)/EX + ((OBS(3)-EX)**2)/EX
1 + ((OBS(4)-EX)**2)/EX + ((OBS(5)-EX)**2)/EX

C
RETURN

C
END

C
** END SUBROUTINE TESTAT **

C

B-17



* PURPOSE: COMPARE THE TEST STATISTIC CALCULATED FROM THE
* CHI-SQUARE OR ONE OF THE MODIFIED K-S, A-D, C-VM
* TESTS, WITH CORRECT VALUES (THE MODIFIED TEST ARE
* FROM PROGRAM CRITICAL) AND COUNT THE NUMBER OF
* TIMES THE NULL HYPOTHESIS IS REJECTED.

* VARIABLES:
* X = RANDOM LOGNORMAL DEVIATES
* N = SAMPLE SIZE
* KS = ARRAY OF VALUES OF MODIFIED K-S TEST STATISTICS
* AD = ARRAY OF VALUES OF MODIFIED A-D TEST STATISTICS
* CVM = ARRAY OF VALUES OF MODIFIED C-VM TEST STATISTICS
* X2 = ARRAY OF VALUES OF CHI-SQUARE TEST STATISTICS
* NSIZ = SAMPLE SIZE COUNTER (1=5,2=15,3=25)
* NSHP = NULL-HYPOTHESIS LOGNORMAL SHAPE COUNTER (1= ,2=3
* NREP = NUMBER OF REPETITIONS TO BE USED
* NALT = ALTERNATIVE DISTRIBUTION COUNTER
* NALF = SIGNIFICANT LEVEL COUNTER (1=.05,1=.01)
* NRKS = NUMBER OF HYPOTHESIS REJECTS UNDER THE K-S TEST
* NRAD = NUMBER OF HYPOTHESIS REJECTS UNDER THE A-D TEST
* NRCV = NUMBER OF HYPOTHESIS REJECTS UNDER THE C-VM TE T

* NRX2 = NUMBER OF HYPOTHESIS REJECTS UNDER THE CHI 2 T.K
* KSCRIT = ARRAY OF MODIFIED CRITICAL VALUES
* ADCRIT = ARRAY OF MODIFIED CRITICAL VALUES
* CVCRIT = ARRAY OF MODIFIED CRITICAL VALUES
* X2CRIT = ARRAY OF CHI-SQUARE CRITICAL VALUES

C
SUBROUTINE COMPAR

C
COMMON DSEED,X,N,C,NC,AMLE,BMLE.P,

1 KS,AD,CVM,IT,NSIZ,NSHPNlE}
1 NALTNALF,NRKS,NRAD.NRV 'vk ,
INTEGER N,NSIZ,NSHP,IT,NREPNRKS

1 NRCV(2,2,3,8),NRX2( _ -'
REAL X(26),AMLE,BMLE.KS(: -,

1 CVM(2,2,3,8),C, NC
1 P(25),ALPHAKSPWR
1 CVPWR( 2,2,3, F . K. "T.
1. CVCRIT(2,2,3 ? "i'
1 X2PWR(2,.2.3 ,
DOUBLE PRECISION DSEE'

C
*** INPUT K-S CRITICA' "A .
C

KSCRIT(1,1,,
KSCRIT(I.I.L,
KSCRIT I. :
KSCRIT1
KSCRIT ,.
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KSCRIT(1,2,3) = .5522
KSCRIT(2,1,1) =.5544
KSCRIT(2,1,2) = .4622
KSCRIT(2,1,3) =.4380
KSCRIT(2,2,I) = .6148
KSCRIT(2,2,2) = .4891
KSCRIT(2,2,3) =.4635

C
** INPUT A-D CRITICAL VALUES FROM TABLE VII: **

ADCRIT(1,1,1) =7.2321
ADCRIT(1,1,2) =10.7748
ADCRIT(1,1,3) = 15.2449
ADCRIT(1,2,1) = 10.9389
ADCRIT(1,2,2) = 12.9161
ADCRIT(1,2,3) = 17.3529
ADCRIT(2,1,1) = 1.8169
ADCRIT(2,1,2) = 3.5184
ADCRIT(2,1,3) = 5.6121
ADCRIT(2,2,1) = 2.3933
ADCRIT(2,2,2) =3.8479
ADCRIT(2,2,3) = 6.0957

** INPUT C-VM CRITICAL VALUES FROM TABLE VIII: **
C

CVCRIT(1,1,1) = .8858
CVCRIT(1,1,2) = 1.6899
CVCRIT(1,1,3) = 2.5205
CVCRIT(121) =1.2142
CVCRIT(1,2,2) = 1.9970
CVCRIT(1,2,3) = 2.7992
CVCRIT(2,1,1) = .3793
CVCRIT(2,1,2) = .7572
CVCRIT(213) = 1.1950
CVCRIT(2,2,1) = .4963
CVCRIT(2,2,2) = .8336
CVCRIT(2,2,3) = 1.3053

C
** INPUT CHI-SQUARE CRITICAL VALUES:

C
X2CRIT(1,1,1) = 6.000003
X2CRIT(1,1,2) = 7.333337
X2CRIT(1,1,3) = 7.600005
X2CRIT(1,2,1) = 12.00000
X2CRIT(1,2,2) =10.66667
X2CRIT(1,2,3) = 10.80000
X2CRIT(2,1,1) = 6.000003
X2CRIT(2,1,2) = 7.333337
X2CRIT(2,1,3) = 7.600005
X2CRIT(221) = 6.000003
X2CRIT(2,2,2) = 10.46378
X2CRIT(2,2,3) = 10.80000

C
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IF (KS(NSHP,NALF,NSIZ,NALT) .GT. KSCRIT(NSHP,NALF,NSIZ))
1 NRKS(NSHP,NALF,NSIZ,NALT)NRKS(NSHP,NALF,NSIZ,NALT) + 1

C
IF (AD(NSHPNALF,NSIZ,NALT) .GT. ADCRIT(NSHP,NALF,NSIZ))

1 NRAD(NSHP,NALF,NSIZ,NALT)=NRAD(NSHP,NALF,NSIZ,NALT) + 1
c

IF (CVH(NSHP,NALF,NSIZ,NALT) .GT.CVCRIT(NSHP,NAJF,NSIZ))
1 NRCV(NSHP,NALF, NSIZ, NALT)=NRCV(NSHP, NALF, NSIZ, HALT) + 1

C
IF ( X2(NSHP,NALF,NSIZ,NALT).GT.X2CRIT(NSHP,NALF,NSIZ))

1 NRX2(NSHP, HALF, NSIZ, NALT)=NRX2(NSHP,NALF, NSIZ,NALT) + 1
C

RETURN
C

END
C

** END SUBROUTINE CONPAR **
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